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Abstract

We present a new exact solution to the defocusing modified Korteweg—de Vries equa-
tion to describe the interaction of a dark soliton and a traveling periodic wave. The
solution (which we refer to as the dark breather) is obtained by using the Darboux
transformation with the eigenfunctions of the Lax system expressed in terms of the
Jacobi theta functions. Properties of elliptic functions including the quarter-period
translations in the complex plane are applied to transform the solution to the simplest
form. We explore the characteristic properties of these dark breathers and show that
they propagate faster than the periodic wave (in the same direction) and attain maximal
localization at a specific parameter value which is explicitly computed.

Keywords The defocusing modified Korteweg—de Vries equation - Traveling
periodic waves - Soliton interactions - Dark breathers

Mathematics Subject Classification 35Q53 . 33E05 . 37K40

1 Introduction

The main model for this work is the defocusing modified Korteweg—de Vries (mKdV)
equation written in the normalized form:

up — 6y + tyrx =0, (1.1
where u = u(x, t) is a real-valued function of two real-valued variables (x, t). The

defocusing mKdV equation (1.1) is a canonical model which can be used to describe
nonlinear phenomena in the physics of fluids and crystals, e.g., the propagation of
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internal waves [14, 27], meandering ocean currents [28], or long waves in the chain
of particles [33].

The purpose of this work is to obtain a new exact solution to the mKdV equation
(1.1) which describes the periodic interaction of a dark soliton and a traveling periodic
wave. Due to periodicity of such interactions, we cast this solution as the dark breather.

Breathers represent spatially localized, time-periodic wave patterns that persist in
the nonlinear dynamics. They generalize solitons by incorporating an additional time
scale associated with internal oscillations and have been widely known in the context
of integrable systems. Breathers of the KdV equations were studied in [5, 16] after
much earlier works [13, 17]. Two families of bright (elevation) and dark (depression)
breathers were constructed and compared with numerical and laboratory experiments
of interactions between solitary waves and dispersive shock waves [3, 25]. Similar
bright and dark breathers were obtained for another model of the Benjamin—Ono
equation [9]. Breathers of the focusing and defocusing NLS (nonlinear Schrodinger)
equations were obtained, respectively, in [11] and [20] after the previous works in [7,
10] and [23, 29, 32].

Breathers arising as a result of interactions of solitary waves and traveling periodic
waves have been observed in various fluids [12, 24, 31, 34]. For a better comparison
with experiments, the breather solutions are needed to be constructed in the simplest
form with all parameters explicitly expressed in terms of the Jacobi elliptic functions.
These representations are useful for the study of the physically observable parameters
such as the speed, localization width, and the relative shift of the solitary wave to the
periodic background.

The exact solutions for complicated wave interactions are available for the mKdV
equation (1.1) due to its integrability. This is expressed through the existence of the
Lax system of two linear equations:

il u
i (f —i§> : (12)
and
— 4l§3+21§u2 4§2u_21§ux+2u3_uxx (1 3)
o= 4§2u+2i§ux+2u3—ux)c _41'{3_21-;-”2 @, .

where ¢ is the (x, )-independent spectral parameter and ¢ = (p, ¢)? is the cor-
responding eigenfunction. The mKdV equation (1.1) appears as a compatibility
condition ¢y; = ¢y, of the Lax system (1.2) and (1.3), see [1, 35] for pioneering
works.

The spectral problem (1.2) can be written as the classical eigenvalue problem:

(L—tDg=0, L= (‘ia" ”‘) (1.4)

—iu 10y

defined by a self-adjoint Dirac operator £ with real u in L*>(R). Spatially bounded
solutions of the eigenvalue problem (1.4) exist for admissible values ¢ on the real
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line R. The set of all admissible values of ¢ is said to be the Lax spectrum associated
with the given potential u. Dirac operators (1.4) with the elliptic potential have been
considered in [30] (see also recent work in [15]).

Although the mKdV equation is related to the NLS equation because they share
the same spectral problem (1.4), there are differences between the complex-valued
solutions to the NLS equation and the real-valued solutions to the mKdV equation. As
aresult, a general family of the traveling periodic wave solutions to the NLS equation
from [20] generates only one traveling periodic wave solution to the mKdV equation
(1.1):

u(x, 1) = go(x +cot), ¢o(x) =ksn(x; k), co=1+k% (1.5)

where k € (0, 1) is the elliptic modulus. The snoidal solution (1.5) is expressed by the
Jacobi elliptic function sn(x; k), where the elliptic modulus & € (0, 1) parametrizes
the family. We note that ¢p(x) = 0 as k — 0 and ¢o(x) = tanh(x) as k — 1, where
the latter solution is referred to as the kink of the mKdV equation (1.1). The snoidal
solution (1.5) generates a more general family of the periodic solutions of the mKdV
equation (1.1) by means of the scaling transformation

ux, 1) = agola(x +ct)), c=a’co, (1.6)

where the parameter o > 0 is arbitrary.

The family of the snoidal solutions (1.5) is related to two (symmetric) spectral bands
of the eigenvalue problem (1.4). This family is not equivalent to the general traveling
periodic wave solution to the mKdV equation which has three spectral bands. In the
case of the focusing mKdV equation, a similar constraint on the general family of
elliptic solutions to the NLS equation [11] generates only two particular (dnoidal and
cnoidal) traveling periodic wave solutions to the mKdV equation [6, 21, 22], which
are not equivalent to the general traveling periodic wave solutions explored in [8].

The scopes of our work are restricted to the dark breathers on the snoidal background
(1.5). We do so by using the one-fold Darboux transformation and by transforming the
solution to the simplest form due to properties of the Jacobi theta functions including
the half-period and quarter-period translations in the complex plane. As the main
novelty of our work, the obtained solutions did not appear in the previous publications
on the defocusing NLS equation in [23, 29, 32]. The explicit expressions are used
to draw information about the physically observable parameters such as the breather
speed, localization width, and phase shift.

Breathers are constructed by picking an eigenvalue in one of the two (symmetric)
spectral gaps of the Lax spectrum associated with the snoidal background (1.5). This
yields dark breathers, for which the dark soliton propagates on the snoidal background
as adepression wave. These breathers are topological because they impart a phase shift
to the snoidal wave background. We show that dark breathers propagate faster than
the snoidal wave background, while imparting a positive phase shift.

It remains open for further studies to obtain similar formulas for the general traveling
periodic wave solutions of the mKdV equation (1.1) related to three spectral gaps, in
which case we anticipate coexistence of two breather solutions: dark breathers in the
two (symmetric) gaps and kink breathers in the central gap. One technical problem
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which needs to be solved for construction of such breathers is to reformulate the
solution u(x, t) of the mKdV equation (1.1) in the form of a quotient of a product of
Jacobi theta functions (see the recent work in [19]) and to obtain the explicit solutions
of the Lax system in a similar form of a quotient of a product of Jacobi theta functions.
This problem is left for future studies.

The organization of this paper is as follows. The main results featuring the closed-
form expression for dark breathers are explained in Sect.2. Breather characteristics
are described in Sect.3. The technical details of the proof are developed in Sect.4.
Appendix A collects together some known relations between Jacobi elliptic functions.

2 Main results

Throughout the work, we make use of two of the four Jacobi’s theta functions [18]:

o0
01(y) =23 (=1 """ sin@n — Dy

n=1

and

o0
04(») = 1+2 (~1)"¢" cos2ny

n=1

7K' (k)

where ¢ := e~ K® with K (k) being the complete elliptic integral and K'(k) =
K (k') with k' = +/1 — k2. It is well-known [18] that K (k) is a quarter period and
i K’(k) is a half period of the Jacobi elliptic function sn(x; k) with the correspondence
y = mx /2K (k). For notational convenience, we use Jacobi’s theta functions

H(x) == 6, (%fk)) L OK) =0, <2;)(Ck)> 2.1

and drop the dependence of k € (0, 1) in the elliptic integrals and elliptic functions
unless it creates a confusion. We also use Jacobi’s zeta function

Z(x) = %%@(x). 2.2)
Using the relation [18, (2.1.1)]:
sn(x; k) = ﬂ, 2.3)
VkO (x)
we write the profile ¢ of the traveling wave (1.5) in the equivalent form:
o(x) = V& gg; 2.4)
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The following one-fold Darboux transformation allows us to obtain a new solution
i of mKdV equation (1.1) from the old solution u:

4i¢ pq

: 2.5)
[72 _ q2

U=u—

where ¢ = (p, q)T is a particular nonzero solution of the linear systems (1.2) and
(1.3), associated with the potential u for a particular value of the spectral parameter ¢.
The validity of the one-fold Darboux transformation formula was recently confirmed
in Appendix A in [6] for the focusing mKdV equation. The new solution # in (2.5) is
real if the complex-conjugate reduction ¢ = p is satisfied on the solution ¢ = (p, ¢)7
of the linear systems (1.2) and (1.3) with real u and real ¢. The solution is singular
if p = p(x,t) becomes real at a point (x,#) € R x R, and the main challenge of
using the one-fold transformation (2.5) is to ensure that #(x, ¢) is bounded for every
(x,t) e RxR.
We are now ready to present the main results of this work.

Theorem 1 Let a € (0, K) be a free parameter in addition to k € (0, 1) and define B
and y by

22
g e [1 2(1 + k)“sn (oz):| OQ2) _ 0Qa) 2.6)

T U+ksn2@)? | @0 YT e

The new solution of the mKdV equation (1.1) for the dark breather is given in the
form:
i e+ 20)e™21 + H(§ — 2a)e®" + 2B H (§)

ulx,t) = OE + 20()672" Ny 20[)6’2” 12,006 s 2.7
where &€ = x + cot withco = 1 + k% and n = k(x + ct 4+ xg) with
. k sn(a) cn(w) dn(a)
k= Z(x)+ 11 k(@) > 0, 2.8)
211 _ 2
¢ = cp 2k(1 4+ k)“[1 — ksn”(«)] sn(«) dn(a) cn() - 0. (2.9)

[Z()[1 + k sn2(a)] + &k sn(e) dn(e) en(e)][1 + k sn2(«a)]?
and arbitrary xg € R.

Remark 1 Since ®(x) > 0 for every x € R, the new solution #(x, t) is non-singular
for every (x,7) e R x R.

Remark2 The value of « is uniquely defined by the spectral parameter ¢ from the
characteristic equation:

_ 1+k 1 —ksn*(a)
€= 2 1+ksn2(a)

sothatifw € (0, K), then ¢ € (¢—, {y) with ¢4 := %(1 =+ k). Intervals (—¢y, —¢-)
and (¢_, ¢4) are two (symmetric) gaps in the Lax spectrum in the spectral problem

(2.10)
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(1.4) associated with the potential u(x, t) = ¢o(x + cot) with the profile ¢ given by
2.4).

Remark 3 The value o € (0, K) determines the phase shift of the solitary wave prop-
agating across the snoidal background because

lim #(x, ) = ksn(€ F 2a).
n—=+oo

Since the period of sn(§) is 4K, a suitably normalized phase shift can be defined by

21 (4a) 2ro € (0. 270) 2.11)
= = — , 2m). .
4K K
The inverse localization width of the solitary wave is defined by « in (2.8), and its
velocity is defined by ¢ in (2.9).

Corollary 1 In the limit k — 1, the family of dark breathers of Theorem 1 generates a
two-soliton solution of the mKdV equation (1.1) in the form:

sinh(€ + 2a)e™2" + sinh(& — 20)e?" 4 2 sinh(£)(1 — sinh?(2a))sech(2c)

ux, 1) = cosh(€ + 2a)e—21 + cosh(& — 2a)e2 + 2 cosh(€) cosh(2a)

’

(2.12)
where

E=x+12t,
n = tanh(2a)[x + 27 + 41 sech?(2a) + xo],

with xg € R and o € (0, 00) being free parameters.

Remark 4 The parametrization formula (2.10) in the limit k — 1 becomes ¢ =
sech(2¢) so that if the first soliton has speed 2, then the second soliton has speed
2+ 472 with ¢ € (0, 1).

Figure 1 shows the spatiotemporal evolution of a dark breather on the snoidal wave
background given by (2.7) in Theorem 1. The breather travels faster than the periodic
wave (both waves travel to the left) and imparts a phase shift.

Figure 2 shows the spatiotemporal evolution of the two-soliton solution given by
(2.12)in Corollary 1 for@ = 0.6 (which corresponds to the eigenvalue { = 0.552). The
two solitons propagate with different speeds, collide, and scatter after some interaction.

3 Properties of the dark breather
Here we explore the characteristic properties of the breather solutions given by Theo-

rem 1. In particular, we analyze the breather phase shift A, the localization parameter
k, and the breather speed c. All parameters are characterized by o € (0, K) which is
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Fig.2 Two-soliton solution (2.12) for @ = 0.6 and xg = 0

uniquely determined via the characteristic equation (2.10) by the value of the spectral
parameter ¢ in the spectral gap (¢—, {+).

The following two lemmas give monotonicity of the mapping { — A and the
existence of a single maximum in the mapping { — «.

Lemma 1 The phase shift A is a monotonically decreasing function of ¢ in ({—, {4)
with A(¢-) = 2m and A(¢+) = 0.

Proof 1t follows from the characteristic equation (2.10) that
J1+k—=2¢ .
V(1 +k+2¢)

where ¢, is defined by o through the incomplete elliptic integral of the first kind as
a = F(gq. k). If & € (0, K), then g, € (0, %). Using (2.11) together with (3.1), we

sn(a) = (3.1
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obtain
2
8§A = FB%F((pa, k)8;g0a.

Differentiating (3.1) in ¢ yields d;¢q < O for ¢, € (0, %). On the other hand, it
follows from the definition of the incomplete elliptic integral that 9, F (¢, k) > O.
Hence, we have 0; A < 0. Since =0at¢{ = ¢y anda = K at { = ¢_, it follows
from (2.11) that A(¢_) = 27 and A(¢y) = 0. m]

Lemma 2 The localization parameter k admits the only extremal (maximum) point in

(&—,¢4) at
E (-4
So = K R (3.2)

where E is a complete elliptic integral of the second kind.

Proof By Lemma 1, the mapping { — A is monotone, where A = 27xa/K in
(2.11). Hence, we can check the mapping « — « instead of { — «. Computing the
derivative of (2.8) in «, we obtain a critical point of the mapping « — « from roots
of the transcendal equation:

2k2 sn?(a) cn? () dn? ()
(1 + ksn?(x))?
cn?(a) dn? (@) — sn* (@) dn? () — k? sn?(a) cn*(a)

E
1— = —k*sn’(a) —
z sn” ()

k 0, 33
+ 1 4 ksnZ(a) (3-3)
where we have used the formula
d E
EZ(x) =1—k%*sn’(x) — <
By using
en’(a) dn(a) + (1 + k)? sn(a) = [1 + ksn(a)]? (3.4)
and the fundamental relations
cn’() =1 —sn’(@), dn’(@) =1 —k%sn’(@) (3.5)
we obtain
|- Rsn@) — 2k2 sn?(a) cn? () dn?(«)
(1 + ksnZ(a))?
cn?(a) dn? (@) — sn?(a) dn? (@) — k2 sn?(«) cn? (@)
+k
1 + k sn?(a)
-3 el@) + 2k2(1 + k)2 sn* () N kl —2(1 + k%) sn?(«) + 3k2 sn*(«)
(1 + ksnZ(x))? 1 + ksn2(a)
2k%(1 4 k)2 sn* (@) k1 —2(1 + k?) sn*(«x) — 3k sn?(ax)
(1 + ksn%(a))? 1 + ksnZ(a)
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Fig. 3 Normalized phase shift A (left), inverse width x« (middle), and breather speed ¢ (right) versus
¢ € (¢—, ¢y) for k = 0.8. The band edges {— and ¢4 are shown by the vertical dashed lines

(1 + ksn?(@))? — 2(1 + k)% sn?(a)

=1+k (1 + ksn2(a))?
B 2k(1 + k) sn?(a)
=UHh [1 T U k@)’ ]

The transcendental equation (3.3) is rewritten in the form

E _ (1-k)  (14k?* 1 —ksn*(@))?
K 2 2 (1 +ksn2(a))?
_ -
2

+2¢2,

which yields (3.2). It follows from (2.8) that « > 0 for & € (0, K) with x — 0 as
a — 0 and ¢ — K. Since there is only one critical point of x for positive ¢, the
mapping { — « is monotonically increasing for { € (¢—, {o) and monotonically
decreasing for ¢ € (go, {+) with the global maximum in ({—, ¢4) at &o. O

Figure 3 plots A, «, and ¢ as a function of the spectral parameter ¢ in the spectral
gap [¢—, ¢4 ]. The band edges ¢_ and ¢4 are shown by the vertical dashed lines. The
phase shift A is monotonically decreasing between the band edges in agreement with
Lemma 1. The inverse width « has a single maximum and vanishes at the band edges
in agreement with Lemma 2. The breather speed ¢ is monotonically increasing and
satisfies ¢ > ¢g.

Figure4 shows the profiles of the family of breathers for three values of k. The
periodic wave background is close to a sinusoidal wave for smaller values of k and is
close to a kink as k — 1 on each period [0, 4K ]. The shift parameter o determines
the breather localization relative to the periodic wave background. When o« — 0 and
a — K, the breather represents a slowly modulated wave over many periods since
the inverse width parameter k becomes smaller. When o — amax given by the root of
(3.3), the breather has the narrowest (strongest) modulation of the cnoidal wave. The
dotted curves in the left panels show the graphs of

{(Amax, cmax —co), k€ (0, DD} and {(Amax, kmax), k € (0, D)}
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Fig. 4 Left: plots of ¢ — ¢ and k versus A for several values of k. Right: representative dark breather
solutions for + = 0. Representative solutions are marked on the left panel with a unique colored symbol.
The dotted line on the left panels corresponds to points of maximal « parameterized by k. The dotted line
on the right panel shows the snoidal wave background

where Amax, Cmax, and kmax are computed at ¢ = opax.-

4 Proof of the main results

The starting point for the proof of Theorem 1 is the exact solution of the following
system of differential equations:

{p%x) = itp(x) + g0 (¥)q (x), @
q'(x) = —igq(x) + ¢o(x) p(x), '

where ¢o(x) = ksn(x) and ¢ = (p, ¢)7 is a solution of the spectral problem (1.2)
for the normalized wave (1.5) after the translation.

We take for granted (see [32] based on earlier works [4, 29, 30]) that the system
(4.1) is satisfied by the following explicit functions

_imx H(x _Z) _inx ®(X_Z)
C oy — LS(@)x 7 - ) — pS(@)x Ve
p(x’ Z) =e e 4 @(X)@(Z)’ q(xv Z) e e 4 @()C)H(Z)’ (42)

where s(z) is defined by
1 1_ ..,
s(z) = EZ(Z) - EZ(IK —2). 4.3)

Here H and ©® are given by (2.1), Z is given by (2.2), and K'(k) = K(k') is the
complete elliptic integral with k' = +/1 — k2 and k being the elliptic modulus.
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Parameter z € C is related to the spectral parameter { € R of the linear system
(4.1) by the characteristic equation

(z) = %dn(z) dn(iK' —2). (4.4)

The second linearly independent solution of the system (4.1) is obtained from (4.2)
by replacing z with 7/ := iK' — z.

4.1 Lax spectrum for the snoidal potential

The following result is based on the study of the characteristic equations (4.3) and
(4.4).

Proposition 1 Lax spectrum associated with the snoidal potential ¢ is located on

(_009 _C+] U [_é‘fv é',] U [§+’ OO)
and the two band gaps are locatedon (—¢4, —¢_) and ({_, {4), where {4 = %(lztk).

Proof Wehave ¢(z) € Rifeitherz € iR+mK orz € R—i—%(Zm—i—l)K’,wherem e Z.
The former follows from the characteristic equation (4.4), the translation formulas
(A.1), and the reflection formulas (A.3). The latter follows from the characteristic
equation (4.4), the translation formulas (A.2), and the addition formulas (A.6).

When z traverses along the rectangle in the complex plane shown in Fig.5 (left),
the values of ¢ in (4.4) change from +o00 to —oo, where ¢ = oo corresponds to
z = 0. The four corner points of the rectangle in the z plane correspond to

A N P a P
:|:§+.=g“<:|:§K>_:I:§(1+k) and :I:g_._g“<:|:2K K)_:I:z(l k).

The values of s(z) in (4.3) are purely imaginary if z € iR + mK and purely real if
ze R+ %(Zm + 1)K’ for an integer m. Lax spectrum of the spectral problem (4.1)
is defined by bounded solutions (4.2) in x which only exist if s(z) € iR. Thus, Lax
spectrum corresponds to

o [¢4,00) forz € (0, 5K],
o [—¢_, ¢ )forze[-5K', iK' - K,
o (—00, —¢4]forz € [-5K',0)

with two (symmetric) band gaps (—¢4, —¢-) and (¢—, ¢4) forz € :t%K/ +[—K, 0]
O

Remark 5 Figure5 (right) shows the Lax spectrum described in Proposition 1 for
different values of k € (0, 1). As k — 0, the Lax spectrum transforms to (—oo, 00).
As k — 1, the Lax spectrum transforms to (—oo, —1] U {0} U [1, 0o), where O is the
isolated eigenvalue of the eigenvalue problem (1.4) for the black soliton [35].
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Rez |—-K T,0)

\ / \ /

2 -1/2 0 1/2 ¢

Fig.5 Left: The path of z in the complex plane for real values of ¢ . Right: Lax spectrum for ¢ (x) = k sn(x)
with k € (0, 1)

4.2 Parameterization in the spectral gap ({_, {)

The spectral gap (¢—, ¢4) corresponds to the horizontal segment with Im(z) = %K ’
for which it is natural to parameterize z by using

7= %K/ —a, ael0 K] (4.5)

Since the dark breathers on the snoidal background are constructed by using the one-
fold Darboux transformation (2.5) with ¢ selected in the band gap, we shall give the
explicit expressions for s(z) and ¢ (z) in (4.3) and (4.4) by using (4.5).

Proposition 2 Let z be given by the parameterization (4.5). Then we have

_1+k 1—ksn*(a)

2 1+ksn?(a) (4.6)
and k sn(e) cn(@) dn(e)
Sn(x) cn(o nwo

s = —Z(O{) — 1+ ksn2(a) (47)

Proof By using (4.4), (4.5), and (A.6), we obtain

1 i, i,
§'=§dn<§K —(X>dn<§K +Ol>
14k dn? (@) + k2 sn?(«) cn?(«)

T2 [1+ ksn2(a)]?

’

which yields (4.6).
By using (4.3), (4.5), (A.6), and (A.7), we obtain

1 iK' 1 iK'
s ==Z —u)|—=Z + o
2 2 2 2
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——Z(@) + 5K (ﬁ) (@) ("K/+ )+ ("K/— )
= o 3 sn ) sn(o sn ) o sn ) o .

which yields (4.7). ]

Remark 6 In agreement with Proposition 1, it follows from (4.6) that { = ¢4 ata =0
and { = {_ at o = K, whereas it follows from (4.7) that the exponent ¥ in (4.2)
is purely real for o € (0, K).

4.3 Time evolution of eigenfunctions in the spectral gap

The time evolution of eigenfunctions (4.2) along the linear flow (1.3) is obtained by
changing x to x + cot and by multiplication of the eigenfunctions by e®@* with w(z)

to be determined:
_ ot | Px +cot;2)
ox,t)=e [q(x Yootz | 4.8)
Substituting (4.8) into (1.3) and using (4.1) yields the algebraic system:

: wp =i (4¢2 +2¢5 — 1 — k2 p + (4520 — 2iLdy + 243 — ¢ — (1 +kH)go)q,
wq = (4¢2¢0 + 2y + 205 — by — (1 + kDo) p — it (4¢2 + 242 — 1 — kP)q,

“4.9)
where ¢g(x) = k sn(x).
Proposition 3 The value of w in the system (4.9) is determined by ¢ € R from
1 1
0 =—1602P@), P@) =" =S+ + (1=K (410)

where P(¢) = (¢2 — ¢ (&% — ¢2) with ¢y = S(1 £ k).

Proof Since (4.9) is a linear algebraic system, we obtain the values of w from the
determinant equation

det ( @2 +205 —1-k) - 402 — 2icel + 207 — o) — (1 + k2)¢0)
40260 + 2iC ) + 263 — ¢ — (1 + k>)gho —ir(@r2+2¢5 -1 -k — o

= 0® + 02402 +2¢F — 1 — k%) — (4820 — 2icdly + 205 — ¢ — (1 + ko)

X (4820 + 2iC Bl + 265 — b — (1 + ko)
=0.

The profile ¢g(x) = k sn(x) satisfies the second-order differential equation:
by — 208 +cogo =0, co=1+k>% 4.11)
Multiplying (4.11) by ¢y, and integrating yields the first-order invariant

(@) — g + cod} = do, do = K, (4.12)
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where the value dy = k? is obtained from (3.5) and (4.12) as
k? cn®(x) dn?(x) — k* sn* (x) + k> (1 + k%) sn® (x) = k>
Using (4.11) and (4.12) in the determinant equation yields (4.10). ]

The next result gives the explicit expression for w(z) for ¢ in the band gap (¢—, {4)
by using (4.9).

Proposition 4 Let z be given by the parameterization (4.5). Then we have

_ , 11— ksn?(a)
w=—-2k(1+k) —[1 T @F

sn(a) cn(er) dn(e). 4.13)
Proof Compatibility of (4.1) and (4.9) implies that the expression for w can be com-
puted from the first algebraic equation of system (4.9) at a single value of x, e.g., at
x = 0. By doing so, we obtain

q(0; 2)

. 2y _gif3 — _oi
o+it(l1+k%) —4ic 21§kp(0;z)

(1 4+ k)sn(x) +icn(o) dn(a)

= 2iCk . ,
(1 +k)sn(a) —icn(x)dn(wx)

where we have used (2.3), (4.2), (4.5), and (A.6). Expressing now ¢ in terms of « by
using (4.6) in the band gap (¢_, ¢+) and using (3.4), we obtain

: 2
0=i |:4§2 2y Zk[(l + k) sn(a) + i cn(a) dn(a)] i|

[1+ ksn2(a)]?
sn(a) cn(e) dn(a)
[1+ ksn?(a)]? ’

= —4ck(1+k)

which yields (4.13). O
Remark 7 1t follows from (4.13) that the exponent e®@! in (4.8) is purely real for
a € (0, K). The values of s in (4.7) and w in (4.13) are strictly negative for all
a € (0, K).

Remark 8 The expression (4.13) can be obtained by taking the negative square root
from the expression (4.10) after ¢ is expressed by (4.6).
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4.4 Quarter-period translation of the Jacobi’s theta functions

The relevance of the quarter-period translations of Jacobi’s theta functions follows
from the representations (4.2) with (4.5):

H(x—z)=H<x+oz—%>, @(x—z):@(x—l—a—%).

The following proposition specifies some useful quarter-period translation formulas
of the Jacobi’s theta functions, which are novel to the best of our knowledge.

Proposition 5 We have for every x € R:

H2 <x+%) ®2 (%) l\/E 7TK/ _inx
Pmer0) 20 +n¢ e At ient)dn()]

(4.14)

and

) (E)

6% 0) = 3050 ¢ e[ +h) sn(x) — i en(x) dn(x)]

(4.15)

Proof We start with the quadratic identities for Jacobi’s theta functions [18, (1.4.16)
and (1.4.19)]:

H(x + y)H(x —y)02(0) = H*(x)®%*(y) — ©*(x)H?(y),

It follows from (2.3) with sn(") = - that

7

i(3) = (%)

where ® (%) is real since © is even with real coefficients. Hence, we obtain from
(4.16):

[Hz(x) + ®2(x)] ®? (”;) —H (x + ﬁ) H <x - ﬂ) ®2(0)

2 2
iK' iK' 2
:®<x+7)®<x )@(0)
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By using the half-period translations of Jacobi’s theta functions (A.4), we obtain their
squared quarter-period translations:

) iK' 5 iK' iK'\ ak i s
H X+ — +0 X+ = —— | =iei e 2k H(x)O(x)O(0).

2
4.17)
Using (2.3) and (A.6) with
iK' 2(1 +k
1 + k sn? x—i—l = a+ ).sn(x) ,
2 (1 + k) sn(x) —icn(x)dn(x)
we obtain (4.14) and (4.15) from (4.17). ]
Remark 9 Setting x = 0 in (4.15) yields the useful relation:
o4 (K ,
( > ) vk (4.18)

= e
®2(0) 2(1 +k)
4.5 One-mode transformation of the snoidal potential

Here we apply the one-fold Darboux transformation (2.5) with the particular solution
@ = (p, q)T of the linear system (1.2) and (1.3) given by (4.2) and (4.8). The following
proposition contains an important identity for the relevant computations of the two-
mode transformation.

Proposition 6 For every x, o« € R, we have

sn(x) sn(e) cn(x + a) dn(x + «) + sn(x) sn(x + «) cn(e) dn(w)
+ sn?(a) — sn’(x + ) = 0. (4.19)

Proof We expand the left-hand side of (4.19) with the addition formulas (A.5):

sn(x) sn(e)[cn(x) en(e) — sn(x) sn(e) dn(x) dn(a)][dn(x) dn(a) — k2 sn(x) sn(e) cn(x) cn(a)]
[1 — k2 snZ(x) sn2(x)]?
n sn(x) cn(a) dn(a)[sn(x) cn(e) dn(e) + sn(a) cn(x) dn(x)]
[1 — k2 sn2(x) sn2(a)]
[sn(x) cn(a) dn(a) + sn(e) cn(x) dn(x)]?
[1 — k2 sn2(x) sn2(x)]?

+ snz(a) —

Expanding the numerators of the two quotients with the squared denominators yields
a simplification

_ sn(x) sn(a) cn(x) en(e) dn(x) dn(a)[1 — k2 sn?(x) sn?(«)] + Rem
[1 — k2 sn2(x) snZ(x)]?

)
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where

Rem := snz(x) snz(oz) dnz(x) dnz(a) + k2 snz(x) snz(a) cnz(x) cnz(a)

+ sn?(x) cn? (@) dn® (@) + sn?(a) cn®(x) dn®(x)
is also divisible by [1 — k% sn? (x) sn? ()] due to the explicit factorization:
Rem = [cnz(x) snz(ot) + snz(x) dnz(a)][l —k? snz(x) snz(a)].
This allows us to rewrite the left-hand side of (4.19) in the simplified form:

sn? (x) cn? () dn? (@) — cn? (x) sn? (a) — sn? (x) dnz(a)

2
[1 — k2 sn2(x) sn2(«)] +s0°(@).

The numerator of the first quotient is divisible by [1 — k% sn2(x) sn?(a)]:

sn?(x) en? () dn® (@) — en?(x) sn’ () — sn’(x) dn’(c)
= —sn’(a)[cn®(x) 4 sn?(x) dn*(@)]

= —sn?(@)[1 — k% sn’(x) sn’ ()],

which completes the proof of (4.19) with — sn? () + sn?(«) = 0. O

With the help of Proposition 6, we prove that the transformation (2.5) with the one-
mode solution (4.2) and (4.8) recovers the same snoidal solution (1.5) after a spatial
translation.

Proposition 7 Let z be given by (4.5), ¢ be given by (4.6), and ¢ = (p, q)" be given
by (4.2) and (4.8) with s and w in (4.7) and (4.13). The transformation formula (2.5)
with u(x,t) = ksn(x + cot) returns

1
nx, ) =—————""— —i iK' t) =k t+2a), (4.20
u(x,t) n(x F cor £ 20) = u(x +i ) sn(x + cot + 2a), ( )

where co = 1 + k2.

Proof By using (2.3) and (4.17), we obtain from (4.2) and (4.8):

H(x+a- K)o (x+a-&)
Fon e+ £)o (e )
_ et a0+ 020+ )
- O (x)[H?*(a) + ©2()]

— _sxH20t O%(x +a) 1+ksn’(x +a)
O2(x)O%(a) 1+ ksn?(a)

imx
— est+2wtefﬁ

pq
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_imx

Since the complex exponential e 2% cancels out, we confirm that pq 1is real since
e2$(% and ¢>*@ are real.
Similarly, by using (4.14) and (4.15), we obtain
H? (x +a— %)
020)6? (—a + &)

_ sx 4201 (I+k)ysn(x +a) —icn(x +a)dn(x + ) ®2(x + )
- (1 4+ k) sn(a) +i cn(a) dn(e) 02(x)02(w)

2 _ e2sx+2wte—"2”—lé‘

p

and
®? (x +a— %)

2 estJrZa)tef—"z”I?
2 2 iK'
O“(x)H <—a + 5 )

q

_ poezo 1R s0G + @) +ientx + o) dnlx +) 0% (x + )
B (1 + k) sn(a) — i en(er) dn(er) O2(x)0%(a)

Again, since the complex exponential e~ 2% cancels out, we confirm that g? is the
complex conjugate of p?.

Substituting explicit expressions for pq, p?, and ¢ into (2.5) and using (4.6) with
(A.5), we obtain the new solution to the mKdV equation (1.1)

2 [1+4 ksn?(@)][1 + ksn?(€ + )]
(1 4+ k) sn(ax) cn(é 4+ ) dn(é 4+ «) + sn(§ + o) cn(w) dn(a)
[1 = ksn2(a)][1 + ksn?(€ + )]
sn(€ + 2a)[1 — k? sn?(a) sn2 (£ + a)]
sn? (o) — snz(é + a)
sn(a)cn(é + o) dn(€ + «) + sn(€ + «) cn(a) dn(oe):|

i(x,t) =ksn(g) —

=ksn(§) —

—*m“‘[
1
T T +20)°

sn(§) +

where £ := x 4 cot and the expression in the brackets is identically equal to zero by
(4.19). Translating the new solution by i K’ with (A.2) yields (4.20). O

Remark 10 The new solution
i(x,t) = —i(x +iK', t) = ¢o(x + cot + 2a)
in (4.20) coincides with the same solution u(x, t) = ¢o(x + cot) after the translation

along the real axis to the left by the phase shift 2«.

Remark 11 1If we use the second linearly independent solution of the linear system
(4.1) given by (4.2) and (4.8) with 7/ := iK' — z instead of z in the transformation
formula (2.5), then i is given by (4.20) with 2« being replaced by —2e. It is translated
along the real axis to the right by the same phase shift 2¢.
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4.6 Two-mode transformation of the snoidal potential

In order to obtain a nontrivial solution & describing a soliton moving on the snoidal
background, we take a linear superposition of two linearly independent solutions given
by (4.2) and (4.8) with z and 7’ = i K’ — z. The two solutions are only different by the
sign of « in the parameterization (4.5) which leaves the solution written in the same
form but with the opposite signs of s and w in (4.7) and (4.13). Hence, we write:

imx H <x + a - %) imx (x - a %)
p= C+esx+wte—ﬁ ' + C,E_SX wte—ﬁ
00 (~a + &) 00 (o + X&)
(4.21)
and
®(x+a—%) ®<x—a—%)
g=cy esx+wt —% ' +e_eS¥ a)le—% .
OWH (—a+ &) OWH (o + &)
4.22)
where ¢ and c_ are arbitrary constants. We choose
cp =ce™, ¢ =ce N, (4.23)
and define n := —s(x 4+ x9) — wt. The following proposition contains an important

identity in the derivation of the solution form in Theorem 1.

Proposition 8 For every x, o« € R, we have

_sn(x—i—a—%)sn(oz—1)—sn(x—a—%)sn(a+%)

- sn(a+ )sn(a — /)

x [(1 + k) sn(0)[1 — k sn?(@)] + i en(x) dn(x)[1 + k snz(ot)]] [1 tk snz(ot)]

=2 [(1 + k)2 sn?(a)(1 — ksn?(x)) — cn?(a) dn’(a)(1 + k snz(x))] ) (4.24)

Proof By using (3.4) and (A.5), we obtain

iK' iK'
n(oz—i— 3 >sn(a—7>
[(1 4 k)sn(x) +icn(e) dn(a)][(1 + k) sn(a) — i cn(a) dn(w)]
- k[1 + k sn?(a)]2
(1 +k)?sn%(@) +cn?(@) dn(e) 1

k[1 + ksn2(x)]? Tk
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and

sn(x + o — %) sn(o — %) —sn(x — o — %) sn(o + %)
sn(o + %) sn(a — %)
[A+k)sn(x +a) —icn(x + a)dn(x + «)][(1 + k) sn(a) — i cn(a) dn(a)]
[1+ksn?(x +a)][1 + ksn?(a)]
[A+k)ysn(x —a) —icn(x —a)dn(x — a)][(1 + k) sn(ex) + i cn(w) dn(a)]
[14+ksn2(x —a)][1 + ksn2(x)]

We will use Landen transformation formulas:

2k _ (I +k)sn(x; k)

14+k]  14+ksn2(x; k)’
2Vk s k)dn(x; k

. vk '\ _ enxi k) dna; )’
1+k 1 4+ ksn2(x; k)

_ 2.
i ((1 . 2\/%) C1—ksn?(xi k)

sn ((1 + k)x;

(4.25)

"1+k)  1+ksn2(x: k)’

where the new elliptic modulus « := 2+/k/(1 + k) and the old elliptic modulus k are
listed explicitly. Suppressing the second argument, the transformation formulas (4.25)
rewrite the previous expression in the new form:

sn(x +a — %)sn(a — %) —sn(x —o — %)sn(a—}— %)
sn(a + &y sn(a — &)
=[sn(1+k)(x +a) —icn(l +k)(x + )] [sn(1 + k)a —icn(l + k)]

—[sn(1+k)(x —a) —icn(l +k)(x —a)] [sn(1 + k) +icn(1 + k)a].

By using (4.25) and (A.5) backwards, we obtain

sn(x + o — %) sn(o — %) —sn(x —o — %) sn(o + %)
sn(o + %) sn(a — %)
_ 2[en(1 +k)x +isn(l + k)xdn(l + Kallsn?(1 + ko dn(1 + k)x — en?(1 + k)]
a 1 —«k2sn2(1 + k)x sn2(1 + k)
=2[cnxdnx(l +ksn®a) +i(1+k)snx(l —ksn’a)]
[(1 +k)?%sn?a(l —ksn?x) —cn?adn?a(l + ksn?x)]
[1+ ksn2a][(1 +ksn2x)2(1 + ksn2w)? — 4k(1 + k)2 sn? x sn? «]

Multiplying this formula by

—i[A+k)snx(1 —ksn?a) +icnxdnx(l +ksn®a)][1 + k sn® «]
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yields (4.24) if and only if the following identity holds:

1+ k)2 sn® x(1—k sn® Ol)2 + cn? x dn? x(1+k sn® a)2
= (1 +ksn®x)>(1 + ksn®a)? — 4k(1 + k)* sn” x sn’ .
However, this identity is true in view of the fundamental relations (3.5). Hence, the
identity (4.24) has been proved. O

We can now provide the proof of Theorem 1. Since the parameter ¢ in (4.23) cancels
in the quotient (2.5) and so is the common factor ©2(x) in the denominators of pq, p?,
and g2, we will not write these common factors and use the sign ~~ for the equivalent
expressions up to the division of these common factors.

Proof of Theorem 1 By using (4.21) and (4.23), we write

_ H? (x—i—oz—%)
2 _inx

g2
_ _inmx X —o— 2
2 2
p e e 2K + e e 2k

@2(—a+£) |2 (oz-l—%)

mH(x—i—ot—%)H(x—oe—%)

+2e7 2k : ,
®<—a+%)®(a+%)

By using (2.3), (4.14), (4.15), (4.16), and (4.18), we obtain

o2 (I+k)sn(x +a) —icn(x + o) dn(x + «) ®Z(x + )

(1 + k) sn(a) + i cn(e) dn(a) 02(x)
o2 (14+k)sn(x —a) —icn(x —a)dn(x — ) O (x — )
(1 + k) sn(a) — i cn(w) dn(e) O2(x)
(1 + k) sn(x)[1 — ksn2(e)] — i en(x) dn(x)[1 + k sn?(a)] ©2(x)
1+ ksnZ(a) 02(0)"

Similarly, we obtain

q2 o2 (14+k)sn(x +a) +icn(x + «)dn(x + @) @2(x + o)

(1 +k)sn(a) — i cn(or) dn(a) O0%(a)
o2 (1+k)sn(x —a) +icn(x —a)dnlx — @) O%(x — «)
(I +k)sn(a) + i cn(a) dn(e) 0%(a)
o (1 + k) sn(x)[1 — ksn?(a)] + i cn(x) dn(x)[1 + k sn?(@)] ©%(x)
1 + ksnZ(ar) O%(0)

This yields a compact expression for the real-valued quantity in the transformation
(2.5):

P*—q* _ _5,sn(x +a)cen(@)dn(@) + sn@) en(x + @) dn(x + @) O*(x + @)
i+ k¢ [1+ k sn2(a) |2 ()
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2 sn(x — o) en(a) dn(er) — sn(e) en(x — o) dn(x — o) O (x — o)
te [1+ ksn2(@)]2 02 (@)
1 — ksn(x) ©%(x)
1 + ksn2(a) ©2(0)°

+ 2sn(x)

To simplify the expression for pg, we write

) H(x—i—ot—%)@(x—i—a—%)
pq ~e e 3K :
H(—a—}-%)@(—a—i—%)
) H(x—ot—ﬁ)®<x—a—£>
+ M™% 2
)@

=
—
S
~ +
I\)l%l\)

Using (2.3), (4.14), (4.15), and (4.18), we obtain

Loyl ksn?(x + @) O (x +a)
1+ ksn2(a) 02 ()
2n1+ksn2(x—ot) 0% (x —a)
1 + k sn%(a) 02 (o)
_i|:sn(x+oz— %) N sn(x—oz—%):|

sn(a + %) sn(—a + %)

pg = —

(14 k) sn(x)[1 — ksn?(a)] + i cn(x) dn(x)[1 + k sn?(a)] ©2 (x)
X 1 + ksn2(a) 0%(0)

By using (4.24), we rewrite pg as follows:

—2n 1 +ksn?(x +a) O*(x +a)
l+ksn2(@) ©O2a)
2 1 +ksn?(x —a) OX(x — a)
T T 1 ¥kst@ 02w
o (1 + k)2 sn?(e0) (1 — k sn?(x)) — cn? () dn? () (1 + k sn?(x)) ®%(x)
(1 + ksnZ(a))? ®2(0)

pq = —e
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Next we substitute the simplified expressions for pg and (p? — ¢®)/(=2i(1 + k))
into (2.5) and bring it to the common denominator. The resulting formula is greatly
simplified with the use of (3.4) and (4.19) to the form # = —N /D, where

B O (x + @)
— 2001 _ 12 on2 2 O7(x +a)
N =e¢ "1 —k“sn“(a) sn“(x + a)] @)
@2()(—0[)
201 _ 32 o2 2,
+ e“M1 — k“ sn“(a) sn“(x — a)] @
1 —ksn2(a) s 2 2, L Ox)
1-|—k—5112(a)[cn (O{) dn ((X) — (1 +k) sn (Ol)] @2(0)
and
2
D = e 21[1 — k2 sn(cr) sn2(x + a)]w sn(x + 20)
O (x)
O (x — )
11 12 o 2, _
+ e“"[1 — k“sn“(a) sn“(x — )] 2@ sn(x — 2a)

©%(x)

+ 2(1 — k2 Sl’l4((¥))®2—(0) sn

(x).

Multiplying both N and D by ©*(«), we rewrite & in the form:

GE+a,0)e™® + G(E —a, ) +28G(&,0)
GE +a,a)e=21sn(€ + 2a) + G(E — a, a)e? sn(E — 2a) + 2y G(£,0)sn(&)’

u(x,1) = —
where £ = x + cot, n = —s(€ + x9) — wt, G is defined by
G(x,a) = [1 — K2 sn?(x) snz(a)] 02 (x)0(a) (4.26)

and the x-independent parameters 8 and y are defined by

0*(a)
040)’

. 1 — ksn?(a) 2 ) y
B = i@ @ dn’(@ — (1467 s’ (@)]

y = [1 e sn4(a)]

04 (@)
e40)

The expression for u(x, t) reduces to the one-mode solutions as n — =+oo. It is
non-singular after the half-period translation along the imaginary axis:

U(x,t) = u(x,t) = —ia(x+iK',1).

To perform the same half-period translation of i (x, t) for the two-mode solution, we
use the translation formulas (A.4) in G (x, o) rewritten as

G(x,a) = O*(x)0* () — H*(x)H? ().
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After canceling the numerical and x-dependent factors in the quotient for i (x +i K’, 1)
and the complex phase in 1 by a suitable choice of x, the expression for u(x, t) can
be rewritten in the form

GE +o, e + GE —a,0)e? +28G(,0)
G(E +a,a)e "2 sn(E + iK' +2a) + G(S —a,a)e?sn(€ + iK' —2a) +2yG(E 0) sn(& +1K’

G(x,a) := H*(x)®%(a) — ®*(x)H ().

Simplifying Gixta,a) yields

Gixtao,a) = H*(x £0)0%* (@) — O*(x + o) H?(a)
= kO%(x £ 0)O%(a)[sn’(x £ @) — sn’(@)]
= k@®? (x £ a)@z(a) sn(x)[sn(x + «) cn(a) dn() + sn(x) cn(x £ o) dn(x + «)]
= kO%(x £ a)O% (o) sn(x) sn(x £ 2a)[1 — k% sn?(er) sn>(x £ )]
=ksn(x)sn(x £20)G(x £, @),

where we have used again (4.19) and where G is given again by (4.26). Substituting
G( + o, ) and G (&, 0) into the expression for i (x, t), using (A.2), and canceling
one power of sn(§) yields

GE +a,a)e 2T sn(E + 2a) + G(E — o, a)e? sn(E — 2a) + 2BG (£, 0) sn(&)
GE+a,a)e 21+ GE —a,a)e2 +2yG(&, 0)

u(x,t) =k

It follows from (4.16) that
G(x,a) = @2(0)®(x +a)Ox — ).
Canceling ®%(0)O (x) yields

O(£ + 20) sn(& + 2a)e 2" + O (& — 2a) sn(& — 2a)e®" + 280 (&) sn(f)
O 4 2a)e21 + O — 20)e?T + 2y O (£)

fi(x, 1) =k

Similarly, we simplify the constants g and y as

0*()
©4(0)

_ 1 — ksn?(ar) s y
B = l—i-k—snz(a)[(l + ksn”(a))” — 2(1 + k)“ sn”(a)]
B |:1 ~2a + k)? sn2(a)i| OQa)

(1+ksn2(@)? | ©(0)

and

0'@)  ©Qa)
©40) 0’

y =[1—k*sn*()]
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where we have used (3.4). These expressions coincide with (2.6). Finally, using (2.3)
yields the two-mode solution in the final form (2.7). O

We end this paper by giving the proof of Corollary 1.
Proof of Corollary T We take the limit k — 1 with the help of the limiting relations:
k=1: sn(x)=tanh(x), cn(x)=sech(x), dn(x) = sech(x)
and
k=1: B=[1- sinh2(2oz)]sech(2a), y = coshQx).
The asymptotic behavior ®(x) ~ cosh(x) with some k-dependent numerical factor
has been clarified in [16, Eq. (36)]. It follows from (2.3) that H (x) =~ sinh(x) with
the same k-dependent factor. Taking the limit k — 1 in (2.7) and canceling the k-
dependent numerical factor in the quotient yields the expression (2.12). We also obtain
from (2.8) and (2.9) that
x = tanh(a) + tanh(a)sech(2a) = tanh(2x)

and
co=2, c¢=2+4sech’Qa).

This concludes the proof of Corollary 1. O

Appendix A Relations between Jacobi’s elliptic functions

Jacobi’s elliptic functions satisfy the translation properties [18, (2.2.17)—(2.2.19)]:

sn(x + K) = ZEE);; en(x + K) = %, dn(x + K) = dnk(/x) (A1)
and
sn(x +iK') = oG en(x +iK') = %IES;) dn(x +iK') = %r;()x)
as well as the reflection formulas [18, (2.6.12)] with kX’ = /1 — kZ:
sn(ix; k) = M, cen(ix; k) = ;, dn(ix; k) = M (A3)
cn(x; k') cn(x; k') cn(x; k')

Similarly, Jacobi’s theta functions satisfy the translation properties [18, (1.3.6) and
1.3.9)1:

Hx+iK)=ieT e R OK), O +iK)=iekKe KHX), (Ad)
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The addition formulas for elliptic functions [18, (2.4.1)—(2.4.3)] are given by

sn(u) cn(v) dn(v) £ sn(v) cn(u) dn(u)

sn(u £ v) = ,
(1) en(o) 3 nla) on o) ) dn)
cn(u) en(v) F sn(u) sn(v) dn(u) dn(v
4+ =
cn(u £v) 1 — k2 sn2(u) sn2(v) ’ (A-5)
dn(u) dn(v) F k2 sn(u) sn(v) cn(u) cn(v)
dn(u £v) = ,
1 — k2 sn2(u) sn2(v)
from which we obtain the following translation formulas:
et 1 (1+k)sn(x)+icn(x)dn(x)
(7.6 N
sn(x+ 2 ) Vk 1 + ksnZ(x) ’
cn (x n %> _ V14 kcn(x) —isn(x) dn(x)’ (A.6)
JVk 1 + ksn2(x)
- dn(x) — ik sn(x) cn(x)
d ) =V1+k
n(x+ 2) + 1 + ksn2(x)
Jacobi’s zeta function satisfies the following addition formula [18, (3.6.2)]:
Zwutv)=Zw) £ Z(v) F k> sn(u) sn(v) sn(u £ v). (A7)
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