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On the long-wave approximation of solitary
waves in cylindrical coordinates

James Hornick, Dmitry E. Pelinovsky and Guido Schneider

Abstract. We address justification and solitary wave solutions of the cylin-
drical KdV equation which is formally derived as a long wave approxima-
tion of radially symmetric waves in a two-dimensional nonlinear dispersive
system. For a regularized Boussinesq equation, we prove error estimates
between true solutions of this equation and the associated cylindrical KAV
approximation in the L?-based spaces. The justification result holds in
the spatial dynamics formulation of the regularized Boussinesq equation.
We also prove that the class of solitary wave solutions considered previ-
ously in the literature does not contain solutions in the L2-based spaces.
This presents a serious obstacle in the applicability of the cylindrical KAV
equation for modeling of radially symmetric solitary waves since the long
wave approximation has to be performed separately in different space-
time regions.

1. Introduction

Long radially symmetric waves in a two-dimensional nonlinear dispersive sys-
tem can be modeled with the cylindrical Korteweg-de Vries (cKdV) equation.
The cKdV equation has been derived in [1-4] by perturbation theory from
the equations of the water wave problem in cylindrical coordinates to describe
radially symmetric waves going to infinity. See [5,6] for an overview about the
occurrence of this and other amplitude equations for the shallow water wave
problem.

Derivation of the cKdV equation is not straightforward compared to its
analog in rectangular coordinates, the classical KdV equation, and it is still an
active area of research in physics [7—10]. No mathematically rigorous results
have been derived for the justification of the cKdV equation, compared to the
rigorous approximation results available for the classical KAV equation after
the pioneering works [11-14]. The main objective of this paper is to prove an
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approzimation result for the cKdV equation and to discuss the validity of this
approximation.

Although we believe that our methods can be applied to every nonlinear
dispersive wave system where the cKdV equation can be formally derived we
restrict ourselves in the following to the system given by a regularized Boussi-
nesq equation. The regularized Boussinesq equation in two spatial dimensions
can be written in the normalized form as

Ofu — Au+ c0f Au = A(u?), (1)

with space variable x = (z1,22) € R2, time variable ¢t € R, Laplacian A =
031 + 5‘52, and a smooth solution u = u(x,t) € R. The normalized parameter
o0 = +1 determines the dispersion relation of linear waves u ~ e~ for

k = (k1,ko) € R? in the form:
. P
1—olk?’

It follows from the dispersion relation (2) and the standard analysis of well-
posedness [15,16] that the initial-value problem for (1) with the initial data

k € R?. (2)

w

U|t:0 = U;O(l‘), atu|t:O = Ul(x)7 S Rza (3)

is locally well-posed in Sobolev spaces of sufficient regularity for ¢ = —1 and
ill-posed for o = +1.

Remark 1. To justify the cKdV equation, we shall use the spatial dynamics
formulation with the radius r := /2% + 23 as evolutionary variable. It turns
out that due to the dispersion term ¢d?Au in (1) the spatial dynamics formu-
lation and the temporal dynamics formulation are not well posed simultane-
ously. If the temporal dynamics formulation is well posed, the spatial dynamics
formulation is ill posed and vice versa.

The radial spatial dynamics formulation of the regularized Boussinesq
equation (1) is obtained by introducing the radial variable r = \/2% + 22 and
rewriting (1) for u = u(r, t) with A = 9? + 10, in the form:

(02 +r710,) (u — 00?u + u?) = dtu. (4)

The associated spatial dynamics problem is given by
Ulpery = ug(t), Ortt]p=ry = u1(t), teR, (5)
for some ro > 0. It is clear that the spatial evolution of (4) with “initial
data” in (5) is locally well-posed for ¢ = 1 and ill-posed for ¢ = —1, see

Theorem 3. In Sect. 2 we derive the cKdV equation for long waves of the radial
Boussinesq equation (4) in case o = 1. The ¢KdV approximation is given by
u(r,t) = e2A(e3r,e(t—r)) with € being a small parameter and A(p, 7) satisfying
the following cKdV equation

20,A+ p P A+ 03 A = 0, (A?), (6)

where 7 := (t —r) € R and p := 3r > py for some pg > 0 are rescaled
versions of the variables (r,¢) in the traveling frame and A(p,7) € R is the
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small-amplitude approximation for u(r,t) € R. We have to impose the spatial
dynamics formulation for the cKdV equation (6) with the initial data

Alp=p, = Ao(1), TER. (7)

It follows from the contraction mapping principle applied to the KdV equation
[17] and the boundedness of the linear term p~ 1A for p > po > 0 that the
initial-value problem for (6) with “initial data” in (7) is locally well-posed for
Ap € H*(R) with any s > %. Moreover, if [, Agdr = 0, then

/ A(pa T)dT = 07 P > P05 (8)
R

which implies that the unique local solution of (6)—(7) satisfies
A€ CO([p()v pl]v HS(R)) and 8;1"4 € CO([/’O? pl]v HSig(R)) (9)

for some p; > pg if Ag € H*(R) and 9-1A € H*72(R), see Lemma 2.
The main approximation result is given by the following theorem.

Theorem 1. Fix s5 > 1—27, p1 > po > 0, and C; > 0. Then there exist

g0 > 0 and Cy > 0 such that for all ¢ € (0,e9) the following holds. Let
A € C%[po, p1], H*A(R)) be a solution of the cKdV equation (6) with

sup (| A(p, Mmea + 107 A(p, ) grea—2) < Ci.
pE[po.p1]
Then there are solutions (u,d,u) € C°([poc =3, p1e=3], H*(R) x H*(R)) of the
radial Boussinesq equation (4) with s > % satisfying

sup sup [u(r,t) — 2 A(e3r,e(t — 1))| < Coe™2.
r€lpoe—3,p1e7 3] teR

Remark 2. The proof of Theorem 1 goes along the lines of the associated
proof for validity of the KdV approximation in [13,14]. However, there are new
difficulties which have to be overcome. The major point is that a vanishing
mean value as in (8) is required for the solutions of the cKdV equation (6), a
property which fortunately is preserved by the evolution of the cKdV equation.
Subsequently, a vanishing mean value is also required for the solutions of the
radial Boussinesq equation (4). However, this property is not preserved in the
spatial evolution of the radial Boussinesq equation (4). We use a nonlinear
change of variables from u(r,t) to v(r,t) in Sect.2 in order to preserve the
vanishing mean value in the spatial evolution.

The cKdV equation (6) admits exact solutions for solitary waves due to
its integrability [18-20]. These exact solutions have important physical appli-
cations [21-25], which have continued to stimulate recent research [26-28]. It
was observed that parameters of the exact solutions of the cKdV equation
agree well with the experimental and numerical simulations of solitary waves.
However, the solitary wave solutions of the cKdV equation do not decay suffi-
ciently well at infinity [29] and hence it is questionable how such solutions can
be described in the radial spatial dynamics of the Boussinesq equation in the
mathematically rigorous sense.
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We address the solitary wave solutions of the cKdV equation (6) in Sect. 3,
where we will use the theory of Airy functions and give a more complete char-
acterization of the solitary wave solutions compared to previous similar results,
e.g. in Appendix A of [29]. The following theorem presents the corresponding
result.

Theorem 2. Consider solutions of the cKdV equation (6) in the class of soli-
tary waves given by

Alp,7) = —602log {1 + (651/31? ((6,07)—1/3)} : (10)

with some F' € C*°(R,R). All bounded solutions in the form (10) satisfy the
decay condition

A(p,7) =0 as |7] —

and the zero-mean constraint

/ A(p,7)dr =0
R
but fail to be square integrable, that is, A(p,-) ¢ L*(R) for every p > 0.

Remark 3. The result of Theorem 2 is due to the slow decay of solitary wave
solutions (10) with

Alp,7) ~ 7|72 as T — —o.

We note that such solitary wave solutions satisfy A € C°((0, 00), H*(R)) for
any s > 0 but we are not aware of the local well-posedness for the cKdV
equation (6) in H*(R) with s > 0. Consequently, the justification result of
Theorem 1 does not apply to the solitary waves of the cKdV equation (6) and
one needs to use matching techniques in different space-time regions in order
to consider radial solitary waves diverging from the origin, cf. [2,21,29].

Similar questions arise for the long azimuthal perturbations of the long
radial waves. A cylindrical Kadomtsev-Petviashvili (cKP) equation was also
proposed as a relevant model in [2,6]. Motivated from physics of fluids and
plasmas, problems of transverse stability of ring solitons were studied recently
in [28,30,31]. Other applications of the KP approximation are interesting in
the context of dynamics of square two-dimensional lattices based on the mod-
els of the Fermi-Pasta-Ulam type [32-34]. Radially propagating waves with
azimuthal perturbations are natural objects in lattices, see, e.g., [35,36], and
clarification of the justification of the cKdV equation is a natural first step
before justification of the cKP equation in nonlinear two-dimensional lattices.
We discuss further implication of the results of Theorems 1 and 2 for the cKdV
and cKP equations in Sect. 4.

Notation. Throughout this paper different constants are denoted with the
same symbol C' if they can be chosen independently of the small parameter
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0 < € < 1. The Sobolev space H*(R), s € N of s-times weakly differentiable
functions is equipped with the norm
1/2

fullr- = {3 [ 1o2uto)Pas
=0k

The weighted Lebesgue space L2(R), s € R is equipped with the norm

L2 = ( / atk) P +k2>8dk)1/2.

Fourier transform is an isomorphism between H*(R) and L?(R) which allows
us to extend the definition of H*(R) to all values of s € R.

[l

2. Justification of the cKdV equation

Here we prove Theorem 1 which states the approximation result for the cKdV
equation. The plan is as follows. In Sect. 2.1 we derive the cKdV equation (6)
for the radial Boussinesq equation (4) in case o = 1. In Sect. 2.2 we estimate
the residual terms, i.e., the terms which remain after inserting the cKdV ap-
proximation into the radial Boussinesq equation. In Sect. 2.3 we prove a local
existence and uniqueness result for the radial spatial dynamics formulation.
In Sect.2.4-2.5 we estimate the error made by this formal approximation in
the radial spatial dynamics by establishing L?- and H'-energy estimates. The
argument is completed in Sect. 2.6 by using the energy to control the approx-
imation error and by applying Gronwall’s inequality.

2.1. Derivation of the cKdV equation
We rewrite the radial Boussinesq equation (4) with o =1 as
(02 +7r710,) (u — Ofu + u?) = O?u. (11)

The cKdV approximation can be derived if > 9 > 0 is considered as the
evolutionary variable with the initial data (5). However, this evolutionary sys-
tem has the disadvantage that [, u(r,t)dt is not preserved in r, see Remarks
4 and 5. In order to overpass this technical difficulty, we rewrite (11) as

R+ 02 +r 10 u= (02 +r10,)(u+u? (12)
and make the change of variables v := u + u?. For small v this quadratic
equation admits a unique solution for small u given by

u=v—v>+ N(v)
with analytic N(v) = O(v?). In variable v, the radial spatial evolution problem
is
(02 + 7710, )v =0} (1 + 2 +r719,) (v — v* + N(v)). (13)
The local existence and uniqueness of solutions of the initial-value problem
{ (02 +r7 10 ) =0?(1+ 02 +r710,) (v —v?> + N(v)), 7 >ro,

U|7‘='r'0 = Vo, 87“U|'r=7'0 =01
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can be shown for (vg,v1) € H*(R) x H*(R) for every s > %, see Theorem 3.
We make the usual ansatz for the derivation of the KdV equation, namely
2Yerav(r,t) := 2 A(3r,e(t — cr)), (14)

3

with 7 := ¢(t — ¢r) and p := €°r, where ¢ is the wave speed. Defining the

residual
Res(v) := — (02 +r 10 ) v+ 07 (1 + 0% +r10,)(v —v? + N(v))  (15)

we find
Res(e%tpckav) = —c2e?0? A + 20568,)5)714 — 588§A

+cfp7r 0, A - 8710, A

+et02A + B0t A — 220,02 A + 5103383A

—cSp TR A+ £1%9710,02A

— 502(A?) — 280X (A?) + 2¢£1°0,02 (A?) — 512838[2)(142)

T eel0p1GH(A%) — £12p710,02(A?)

+202(1 + (—cedr +°0,)% +%p~ (—ce0, +£%9,))N(e*A)
where the last line is at least of order O(¢®). We eliminate the terms of O(g?) by
choosing ¢? = 1. The radial waves diverge from the origin if ¢ = 1 and converge
towards the origin if ¢ = —1. It makes sense to consider only outgoing radial
waves, so that we set ¢ =1 in the following.

With ¢ = 1, the terms of O(g%) are eliminated in Res(£2ckxqv) by choos-
ing A to satisfy the cKdV equation (6) rewritten here as

20,A+p TA+02A-0,(A%) =0. (16)
By this choice we formally have
Res(e2ekav) = O(e®).

We will estimate the residual terms rigorously in Sect. 2.2.

Remark 4. In our subsequent error estimates d; ' has to be applied to Res(v)
in (15). However, this is only possible if the nonlinear change of variables
v = u + u? is applied. This change of variables also allows us to use the
variable 0, 19w which played a fundamental role in the justification of the
KdV equation in [13,14] and which is necessary to obtain an L?-bound for the
approximation error.

2.2. Estimates for the residual

For estimating the residual Res(521/JCKdv) we consider a solution
A € C([po, p1], H*4(R,R)) of the cKdV equation (16) with some s4 > 0
suitably chosen below. Let

Ca= sup [A(p,)aea < oc. (17)
PE[pa,p1]



NoDEA On the long-wave approximation of solitary waves Page 7 of 27 50

With ¢ = 1 and A satisfying the cKdV equation (16), the residual is rewritten
as
Res(szchdv) = 7585‘2/1 - sgpflﬁpA - 2588p8§A + 5108§8$A

— %7103 A+ 109 710,02A — e202(A?) + 2£100,02(A?)

— 612372_83(142) + 107193 (A%) — 512p718p33(A2)

+202(1+ (—€0; +°0,)* + °p~ 1 (—€0; +0,))N(e*A)
We can express p-derivatives of A by 7-derivatives of A through the right-hand
side of the cKdV equation (16). Hence for replacing one p-derivative we need
three 7-derivatives. In this way, the term 5106,2,03 A loses most derivatives,
namely eight 7-derivatives. Due to the scaling properties of the L?-norm w.r.t.
the scaling 7 = (t — ), we are loosing e~ /2 in the estimates, e.g., see [37].
As a result of the standard analysis, we obtain the following lemma.

Lemma 1. Let s > 0. Assume (17) with s4 = s+ 8 and C4 > 0. There exists
a Cres > 0 such that for all € € (0,1] we have

15
sup ||Res(€27/}chV)(r; )HHb S Crcs{': 2.
r€lpoe=3,p1673]

In the subsequent error estimates we also need estimates for 0, L applied
to Res(e29ekqv)- The only terms in the residual which have no d; in front are
the ones collected in

Ry = 200 A—%p 10, A

When 0,4 is replaced by the right-hand side of the cKdV equation (16), we
find

Ry = 2(0,+ p~)(p " A+ 624 — 0,47

2
= 200, + @A~ A 4 ' 0,A
_ iaT(za,, 4o 1) (024 — A2) — ip*m.

Therefore, all terms in the residual can be written as derivatives in 7 except of
the term —(4p?)~1A. The operator 9!, respectively a multiplication with i
in the Fourier space, can be applied to —(4p?)~*A only if A has a vanishing
mean value and its Fourier transform decays as O(|k|) for k& — 0. This is why
we enforce the vanishing mean value as in (8) and consider solutions of the
cKdV equation in the class of functions (9). Such solutions are given by the
following lemma.

Lemma 2. Fiz sy > 2, py > 0, and pick Ay € H*A(R) such that 91 Ay €
H*A72(R). There exist C > 0 and p1 > po such that the cKdV equation
(16) possesses a unique solution A € C°([po, p1], H*4(R)) with A|,—,, = Ao
satisfying

sup (| A(p, Mmea + 1071 A(p, )| grea-2) < C.

PE[po,p1]
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Proof. The c¢KdV equation (16) possesses a unique solution
A € C%[po, p1], H*4(R)) for sy > 2, see [17]. To obtain the estimate on
B := 071 A, we rewrite (16) in the form:

20,B+p "B+ 07A— A% =0.
Since By := 0;1Aq € H®*47%(R), integration of this equation with A €
C%([po, p1], H*A(R)) yields B € C°([po, p1], H*47*(R)). O

For estimating the residual Res(e2t.kqv) we consider a solution A €
C%([po, p1], H*4(R)) of the cKdV equation (16) with
Cap:= sup (|Ap,)mea + 107 Alp, )l gea-2) < o0, (18)
pE[po,p1]

and with sy > % being sufficiently large. Due to the correspondence 0; 1=
7191 we have the following lemma.

Lemma 3. Let s > 0. Assume (18) with s4 = s+8 and C4, g > 0. There exists
a Cyes > 0 such that for all € € (0,1] we have

— 13
sup Hat lRes(€2¢CKdV)(T7 )HHS S Cres<€ 2.
r€lpoe=3,p1~

Remark 5. Without the transformation v = u + u? which converts (12) into
(13), the terms in the residual Res(u) constructed similarly to (15) which have
no 0 in front would be
—588514 —e%p719,A — 6108§(A2) —e'%719,(A%).

As above by replacing 0,4 by the right-hand side of the cKdV equation (16) we
gain derivatives in 7. However, due to the p~1 A term in (16) among other terms
we would produce terms of the form e8p=2A and £'°p=2A2. The operator 9, *
can only be applied to these terms if A and A? have a vanishing mean value.
However, A% can only have a vanishing mean value if A vanishes identically.
Moreover, it doesn’t help to consider 929 '(A?) and p~'0,0; ' (A?) directly
since the cKdV equation (16) does not preserve the L?-norm of the solutions.
Therefore, the transformation v = u + u? is essential for our justification
analysis.

2.3. Local existence and uniqueness

Here we prove the local existence and uniqueness of the solutions of the second-
order evolution equation (13), which we rewrite as

(02 +7r719,)(1 — 02)v = 20 + 92 (1 + 92 +r719,) (—v® + N(v)).
By using B2 := §?(1 — 9?) !, we rewrite the evolution problem in the form:
(02 +r710,)v = B*0 + B*(1 + 02 +r19,)(—v?® + N(v))
= B%v + B*(—v? + N(v)) + 7 'B*(—2v + N'(v))d,v
+ B* [(—=2v 4 N'(v))d2v + (=2 + N"(v))(9,v)%] . (19)
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The operator B2 is bounded in Sobolev space H*(R) for every s € R. The
second-order evolution equation (19) can be rewritten as a first-order system
by introducing w := 0,v such that

Orv = w,
{ Orw = f(’U, ’U)), (20)
where
F,w) = —r~tw+ [1 = B2 (=20 + N’ (v))]] " B2 [v — v + N(v) + (=2 + N” (v))w?] .

Since N(v) = O(v?) for small v, the right hand side of system (20) for suf-
ficiently small v is locally Lipschitz-continuous in H*(R) x H*(R) for every
s> % due to Sobolev’s embedding theorem. The following local existence and
uniqueness result holds due to the Picard-Lindel6f theorem.

Theorem 3. Fiz s > % and ro > 0. There exists a 69 > 0 such that for all
0 € (0,90) and (v, wp) € H*(R) x H*(R) with ||vg|| = < 0, there exists r1 > 1
and a unique solution (v,w) € C°([rg, 1], H*(R) x H*(R)) of system (20) with
(Ua w)|T:7‘o = (U07 wO)'

Corollary 1. There exists a unique solution (v,d,v) € C°([rg,r1], H*(R) x
H*(R)) of the second-order evolution equation (13) for the corresponding
(Ua aTU)|T‘:7’0 = ('Uo, wO)'

Remark 6. A combination of the local existence and uniqueness result of The-
orem 3 with the subsequent error estimates, used as a priori estimates, guar-
antees the existence and uniqueness of the solutions of equations for the error
terms, see equation (21), as long as the error is estimated to be small.

2.4. The LZ-error estimates

We introduce the error function R through the decomposition
v =e®ekav +e°R

with ¢ekav(r,t) = A(p,7) and B := % to be obtained from the energy esti-
mates, see Sect. 2.6. The error function R satisfies

0=(2+r'0.)R-0}(1+0>+r0,.)R
+2202(1 4 02 +7719,)(AR) + %92 (1 + 9? + r—19,)(R?)
— e PR+ 02 +r719,)(N(e?A+ °R) — N(2A))
— e PRes(%A). (21)
Before we start to estimate the error we note that there is no problem with
regularity of solutions of equation (21) in the following sense. Rewriting (21) as
(19) and (20) in Sect. 2.3 shows that if (R, d,.R) € C°([rg,r1], H*(R) x H*(R)),
then 9?R(r,-) has the same regularity. In particular, we have the estimate:
Lemma 4. There exist constant C) and a smooth monotone function C, such
that for all e € (0,1) we have
1O2R(r, )| 12 < €% P Cres + C1(1 + £2CA)(IR(r, )| 12 + 18- R(r, )| 2)
+ P Cu(|IR(r, )l Loe + 10 R(r, )l Lo ) (IR(r, ) g2 + 10r R(r, ) £2), (22)
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where Ches is defined in Lemma 1 and Ca is defined in (17).

Remark 7. The difficulty in estimating the error R comes from fact that the
error equation (21) contains the linear terms of order O(g?) while we have
to bound the error on the interval [e=3rg,e73r1] of length O(e73). We get
rid of this mismatch of powers in & by writing the terms of order O(g?) as
derivatives in r such that these can be either included in the balance of energy
or be written as terms where derivatives fall on A which allows us to estimate
these terms to be of order O(e?).

We follow the approach used in the energy estimates for the KdV ap-
proximation for obtaining an H'-estimate for R [13,14]. To obtain first the
L*-estimates for R, we multiply (21) with —9,0; 2R and integrate it w.r.t.
t. The term —0,9; R is defined via its Fourier transform w.r.t. ¢, i.e., with
abuse of notation, by 9; 'R = F~1((ik)"'R). All integrals in ¢ are considered
on R and Parseval’s equality is used when it is necessary. We report details of
computations as follows.

i) From the linear terms in R we then obtain
1d
o= — / (02 B)(0,0; *Rydt = / (0,0, R)2dt,
r
sy = — /(r*larR)(aTa;ZR)dt =1 /(6r8;1R)2dt,
1d

83 = /(83R)(8T8;2R)dt =5 R2dt,
1
o / @ 02R) (0,0, Ryt = - [ (0, Rt
T

55 = / (r=19%0,R)(0,0; *R)dt = ! / (0.R)*dt.
ii) From the mixed terms in AR we obtain

St = — 262 / (02(1 + 02 + 1~10,)(AR)) (9,0, > R)dt

= —2¢2 /((1 + 02 +7710,)(AR))(0,R)dt = s¢ + s7 + s,

where
56 1= —2e2 / (AR)(8,R)dt,
o7 1= —2e? / (02(AR))(0, R)dt,
sg 1= —2¢2 / (r~'0,.(AR))(0,R)dt.
We find

Sg = —52% /ARth + 52 /(8TA)R2dt,
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where the second term is estimated by

= [ (8TA)R2dt‘ < 20, Al L~ | BI12:

which is O(g%) since 9,A = —0, A + £30,A by the chain rule. Next we
have

57 = —2¢2 /(83A)R(8TR)dt —3¢2 /(&A)(a R)? /A O-R)?

which are estimated by

= [ <63A>R<0TR>dt\ < 22|02 Al 1~ | Rl 2 |9, Bl 2,

g2 /(&A)(BTR)th‘ < 3¢%0, A|| |0, R||3..

These terms are at least of order O(g?) since 9,A = O(e) and 92A =
O(e?) by the chain rule. For the last term, we obtain the estimate

[ss] < 270, All || Rl 1210, Rl| 2 + 26*r 7| All L~ [0 R|1 7

which is of order O(g°) since r € [roe =3, p1e73].
iii) From the quadratic terms in R we obtain

st =~ [ ©F(1 402 +110,)(R2)(0,0; * Ry

S /((1 + 83 + r_lar)(RQ))(Z?TR)dt = Sg + S10 + S11,

where

1
Sg 1= —sﬁ/Rz(arR)dt = —ggﬂdd /R3dt,

510 := —€” / (02(R*))(0,R)dt = —sﬁ% / R(D,R)?dt — £° / (0,R)3dt
o1 1= —P / (r=10,(R2)) (0, R)dt

The remaining terms can be estimated by

<[ @R)Sdt\ < P10, Rl |9, R,

e’ /(rlﬁr(RQ))(&R)dt‘ < 2¢%r7 | R|| L [|0- R |7
iv) For the terms collected in N we have
sy=¢ " /(33(1 + 02 +7719,)(N(e?A + €°R) — N(2A))) (9,0, 2R)dt

= F /((1 + 07 +1r7'0,)(N(€2A+”R) — N(*A))) (9, R)dt
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Since N (v) is analytic in v we have the representation N(v) = > a,v",
with coefficients a,, € R, and so we find

e P(N(?A +PR) — N(£2A)) —a_BZanZ< ) (e2A)" I (P R).

such that these terms are at least of order O(e*) and make no problems
for the estimates w.r.t. powers of . However, we have to be careful about
the regularity of these terms. As an example, we look at the terms with
most time derivatives, namely

/OE(A”_JRJ)(arR)dt = S12 + S13 + S14,
where

S19 1= / (02(A™7))R? (D, R)dt
s1a =2 [[(0,(47)(@, (R) 0, Ry
S1a 1= / AM= (92(R)) (9, R)dt
=j(j— 1)/A”*J'Rﬂ'*(a,R)?’dt+j/A"*ij*1(afR)(arR)dt

The second derivatives 92 R is controlled in terms of R and d, R by means
of (22). As a result, there exists a constant C; and a smooth monotone
function C, such that for all € € (0,1) we have

sv| < *GilIRI1Z2 + 10-R]1Z2)
+ PO ([R] o + 110 Rl L) (| RIIZ2 + 10, Rl[72)-
v) The residual term gives
515 = cP / (Res(e24))(0,0; 2 R)dt = —e—P / 07 (Res(=2A)) (0,0, ' R)dt.
It is estimated by
|s15] < Crese 2 ~)|0,0; ' R]| 2,
where C,es is defined in Lemma 3.

Remark 8. Without the change of variables v = u+u? we would get addition-
ally the following mixed terms

—2¢2 / (0%(AR))(0,0; 2R)dt — 2¢2 / (r~19,(AR))(,0; *R)dt

which cannot be written in an obvious manner as sums of a derivative w.r.t. r
and higher order terms. Without the change of variables v = u 4+ u? according
to Remark 5 we cannot estimate 9; ' (Res(¢2A4)) nor the counterpart to sis.
This emphasizes again the necessity of the change of variables v = v + u? in
order to replace (12) with (13).
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2.5. The H'-error estimates

The energy quantity will be constructed in Sect.2.6 based on the derivative
formulas for si, s3, s4, and other terms. It will be used for estimating the
terms which we were not able to write as derivatives w.r.t. r. Since we need
estimates for ||R| p~ we will use Sobolev’s embedding

Ifllze < Cliflm, Ve HY(R) (23)

and hence we have to extend the energy by additional terms involving [|9; R||3.
To do so, we proceed here as in Sect. 2.4 but now for the L?-error estimates of
the t-derivatives.

Based on the product rule

[10:(uv)l| L2 < l[ullzee(|0ev]| L2 + (V]| Lo [|Opu] L2 (24)

we have the following generalization of the bound (22) in Lemma 4.

Lemma 5. There exist constant Cy, Cy res and a smooth monotone function Cy,
such that for all € € (0,1) we have

102 R(r, Yl g1 < €% P Cres + (L +2Ca) (I1R(r, )l g1 + 18- R(r, )l 1)
+ Ca([R(r, Yoo + 10-R(r, )| Lo )e? (IIR(r, )| g1 + [0 R(r, ')HH1272
where Ches is defined in Lemma 1 and C4 is defined in (17).

To get the H!-error estimates, we multiply (21) by 9, R and then integrate
w.r.t. t. We report details of computations as follows.

i) From the linear terms in R we obtain

= /(333)(87~R)dt = %% (8,R)dL,
ro = /(r*laTR)(arR)dt =1 /(&R)th,
r=- [@m0.Rw =55 [@R7d
2 dr
T4 = / (0702R)(0,R)dt = %d% / (0,0, R)?dt,

vy — — / (02r=10,R)(0, R)dt = r~1 / (0,0,R)2dt.
ii) From the mixed terms in AR we obtain
Tmixed = 267 /(8?(1 + 02 +r719,)(AR))(0,R)dt

= —2¢2 /((1 + 02 +7710,)0,(AR))(0,0;R)dt = 16 + 17 + 18,



50 Page 14 of 27 J. Hornick et al. NoDEA

where

rg 1= —2e / (0,(AR)) (9,0, R)dt,

7y = —2e? / (020,(AR))(0,0;R)dt,

rg = —222 / (r=10,0,(AR))(,0, R)dt.
We find

Te — 7262 /(&A)R(@T@tR)dt — 82% /A(atR)2dt + 52 /(&A)(&R)th,

which can be estimated as

2¢? /(GtA)R(a,,atR)dt‘ < 2620, Al| L || R|| 21|07 0¢ R|| 1.2,

= [ (@A)(atRth\ < )0, All 1 |0 R|2.

These terms are at least of order O(g?) since 9, A and 9, A are of order
O(e) by the chain rule. Next we estimate 77 for which we note that

d

o A(0,0,R)?dt = / (0,A)(0,0,R)*dt + 2 / A(0,0;R) (8?0, R)dt

and

20,(AR) = A0, R + 2(0,A)8,0,R + (0, A)9>R
+ 2(0,0,A)0, R+ (0 A)O,R + (9?0, A)R.

As a result, we obtain
rT = —52% /A(aratR)zdt + 170+ 170+ T+ TTd T
with
Frai= 367 / (0, 4)(0,0,R)2dt,
r7p = —2e” / (0, A)(0?R) (0,0, R)dt,
7.0 = —4e? / (0,0, A)(0,R)(8,0,R)dt,
7.4 = —2€* / (02A)(0,R) (0,0, R)dt,

rry = —22 / (020,A)R(9,0, R)dt.
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iii)

We estimate
77,0l < 3€%[10, All L 10,0 R 2,
77| < 262\ 0 All Lo |07 R 12 [|0: O R 2,
r7.c| < 4€%(10,0, All L= |0, ]| 121|0, 0, R 2,
77,4l < 26°||07 Al L [|0: R| 21| 0- O R 2,
[77.el < 26%[1070 Al| Lo || Rl| 21|01 0¢ Rl 2.

All these terms are at least of order O(e?) because of the derivatives on
Ain 7 and t. Moreover, we can use (22) for estimating ||02R||z2. The last
mixed term is decomposed with the product rule as

T8 =718+ 786+ 78,c+78,d>

where

8,0 = —252/T_l(aratA)R(aratR)dt,
re.p 1= —252/r_l(atA)(arR)(aratR)dt,
roe = 222 / r=1(0,A) (9, R) (9n0, R)dt,

TS.d 1= —262/7“_1A(8T6tR)2dt.
We estimate
75,0l < 26%r7|0, 0, All L || Rl| 12 10:0: R 2,
[7s,0] < 26%7 7|0y All L (|0 Rl | 12]|0- 0 R 2,
Irs.cl < 26*r7 10, All L=< |0¢ R 1210, 0¢ Rl 2,
[7s,al < 2677 | Al L= |0, 0, |2

From the quadratic terms in R we obtain

Fauad = €7 / (1 + 2 +r18,)(R2)(0, R)dt

_ .8 /((1 + 02 4+ 1710,) 00 (B2) (0,0 R)dt = 7o + r1o + 711,
where
Tg = f2sﬁ/R(8tR)(8r8tR)dt,

T10 ‘= *5ﬁ /(333t(R2))(8r8tR)dt,

ri1 = —Eﬁ/Tﬁl(arat(R%)(aratR)dt.

The first term is estimated by
o] < 22| R| o= |0, Rl| 2|0, 0, R 2.
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The second term is rewritten by using

di / R(0,0,R)*dt = / (0,R)(0,0:R)*dt + 2 / R(0,0,R) (0?0, R)dt
,
and

020;(R?) = 2RO?0;R + 4(0,R)0,0; R + 2(8; R)9*R
in the form
rio = —€P % / R(9,0;R)?dt + 10,0 + 104
with
10,0 1= —3° / (0,R)(0,0,R)%dt,

ri0p 1= —2e° / (0,R)(92R) (0,0, R)dt.
The remainder terms are estimated as follows
10,0l < 3671|0, R|| 1= 10,0, R| 2.,
10,6 < 267|107 Rl| o< |0 R 2| 0- 0: Rl 12,

where we can use (25) and Sobolev’s embedding (23) to estimate |0, R|| 1,0
and ||0?R||p~. The last quadratic term is decomposed with the product
rule as

11 = T11,a + 7110,

where

T11,0 = —255/r_1R(8T8tR)2dt,

rinp = —2¢ / (0, R)(0,R) (0,0, R)dt,
which we estimate by
11,0l < 26777 Rl| 1< |0, 0: |72,
Ir11p] < 261710, R|| o ||O:R|| 12 ||0- s R|| L2 -

iv) For the terms collected in N we have

ry=—¢ " /(53(1 + 02 +7r719,)(N(e?A + °R) — N(%A))) (9, R)dt

== (432477 10)0UN A + R) - N(2A)) (0,0, R)de

Proceeding as for the L2-estimate and using the bound (25) on the second
derivative 92R in terms of R and 9, R yields the existence of a constant
Ch4, and a smooth monotone function Ci4, such that for all e € (0,1)
we have

rx] < Crage* (1RIE + 10- Rl Z0)
+ Cran (IRl + 10- Rl L )e* P (I RIF + 110, R 0)-
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v) The residual term

rig = —€ P /(Res(szA))(arR)dt
is estimated by
1] = Crese = 7|0, Rl 2,
where Cles is defined in Lemma, 1.

2.6. Energy estimates

We use the terms si, s3, sS4, 71, 73, 74, and the parts of sg, 7, s9, S10, 76, 77,
and r1o with derivatives in r to define the following energy

E=FEy+ E

with

Ey = ;/Rth—kl/(aé‘ 'R)? dt+;/(8rR)2dt
1/(@ V2t + = /(8R)dt+2/(88t )2t

=—¢ /ARth /A (0,R)? /R3dt /R(&TR)th
—&? / A(O;R)?dt — &* / A(aratR)th—eﬂ / R(0,0:R)*dt.

The energy part Ey is an upper bound for the squared H'-norm of R, 9; 'R,
and 9, R. Moreover, for all M > 0 there exists an €; > 0 such that for all
e € (0,e1) we have

1 3
— < < —
5 Eo < E1 < S Eo

as long as E'/2 < M. All other linear terms which are not contained in the
energy E have either a 7~ = ¢3p~! in front, namely s9, ss5, sg, 72, 75, and 73,
or contain a time or space derivative of A, as parts of sg, s7, rg, and 77, and
so all other linear terms are at least of order O(¢?). All nonlinear terms have
at least a e* or € in front. The residual terms s15 and 71 are of order O(e?)
if 8 is chosen as 3 = % As a result, we estimate the rate of change of energy

FE from the following inequality
diE < C3E + C"2E32 4 0P EL/2
r
<203 E + CeTPE? 4 €63, (26)

with a constant C' independent of £ € (0,1) as lomg as E'/2 < M. Under the
assumption that Cel/2EY2 < 1 we obtain

d
E< (2C +1)e3F + C&3.
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Gronwall’s inequality immediately gives the bound

sup  BE(t) = CToe?+HDT = M = O(1)
tE[O,To/ES’]

and so  sup ||R(t)||g: = O(1). Finally choosing €3 > 0 so small that
t€[0,Ty /3]

C’aéﬂMl/2 < 1 gives the required estimate for all ¢ € (0,e9) with g9 =
min(ey,e2) > 0. Therefore, we have proved Theorem 1.

3. Solitary wave solutions of the cKdV equation

Here we prove Theorem 2. We look for solutions of the cKdV equation (6) in
the class of solitary waves represented in the form

Alp,7) = ~602log f(p,7), (27)

which tranforms (6) to the following bilinear equation [20]:

2 [£0,0r f — (0, 1) (O )49 £, f+ OLF—4(0, ) (O21)+3(D21) = 0. (28)
To prove Theorem 2, we analyze solutions of (28) in the self-similar form
[27,28,31]:

1 T

flp,7) =1+ WF(Z)’ z= (69)173 (29)

with some F € C*(R,R). The form (27) and (29) yields (10). We give a
complete characterization for all possible solutions for F(z) and prove that
there exist no square integrable function A(p,7) w.r.t. 7. The proof is based
on the three results obtained in the following three lemmas.

The first result gives the most general expression for F(z) in (29).

Lemma 6. The most general solution f(p,7) of the bilinear equation (28) in
the self-similar form (29) with F € C*(R,R) is given by

F(z)=a [(wi)2 - zwﬂ + 2/ af [whwl — zwiws] + 3 [(11)’2)2 - zwg] , (30)

where a, f € R are arbitrary such that aff > 0 and w1 (z) = Ai(z), wa(z) :=
Bi(z) are two linearly independent solutions of the Airy equation

w”(z) — 2w(z) = 0. (31)
Proof. Substituting (29) into (28) shows that the variables are separated and

F(z) satisfies an overdetermined system of two (linear and quadratic) differ-
ential equations:

F""(2) —4zF"(z) — 2F'(2) =0 (32)
and
AF'(2)[zF'(2) + F(2) — F"'(2)] + 3[F"(2)]* = 0. (33)
Let G(z) := —F’(z). Then (32) reduces to the third-order equation
G"(2) —42G'(2) — 2G(2) = 0,
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the general solution of which is known (see 10.4.57 in [38]):
G(2) = a[Ai(2)]? + B[Bi(2)]* + vAi(2)Bi(z), (34)

where «, 3,7 are arbitrary. Denoting wq(z) := Ai(z) and wy(z) := Bi(z), we
confirm that

d
a[(w/my - zw%2] = 2w/1,2(w11/,2 - zw1,2) - w%,2 = —wi2
and
a[wiwé — 2wiwz] = (W] — 2wi)wh + wi(wh — zws) — wiwy = —wwe

Hence, F'(z) = —G(z) is integrated to the form
F(z)=C+a[(w))? — 2wi] + B [(wh)? — 2w3] + v [wiwh — zwiw,], (35)

where C' is an integration constant. The same constant C' appears in the inte-
gration of (32) to the form

F"(2) —42F'(2) + 2F(2) = 2C. (36)
Tt remains to verify if the general solution (35) satisfies the quadratic equation
(33). Multiplying (36) by F”(z) and integrating, we obtain
[F"(2)]? — 42[F'(2))*> + 4F (2)F'(2) = 4CF'(2) + D, (37)
where D is another integration constant. On the other hand, substituting (36)
into (33) yields

[F"(2)]? — 42[F'(2)]> + 4F (2)F'(2) = gCF’(z). (38)

Comparison of (37) and (38) yields C = D = 0. Finally, we substitute (35)
into (38) with C' = 0 and obtain

0= [F"(2)]* — 4z[F'(2)]* + 4F (2)F'(2)
= (v* — 4afB) (wiwy — wiws)?,
where the Wronskian of two linearly independent solutions is nonzero, wywh —
wiwy # 0. Hence, the system (32)-(33) is compatible for the solution (35) if

and only if C' = 0 and v = +2+/a/ with only two arbitrary constants «, 3 € R.
O

The solution F(z) in (30) is real if and only o8 > 0. The next result
shows that the expression (29) with this F' is sign-definite (positive) if and
only if « > 0 and § = 0.

Lemma 7. Let F be given by (30) with a8 > 0. For every k > 0, we have
k+ F(z) >0 for every z € R if and only if « > 0 and 3 = 0.

Proof. We shall make use the asymptotic expansion of the Airy functions, see
10.4.59-60 and 10.4.63-64 in [38]:

1 2.3/2
Ai ~ —35Z 1 —3/2
+ 2R 1+0GE),

~ ﬁ%6§Z3/2 [1 + (9(273/2)} ,

as z — 400
Bi(2)
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and
Aiz) m [sin (2|,23/2 + ”) + O(|z|3/2)]
vaylal LA3 4 s
. 1 2 4, T s as z — —00
BI(Z) ~ m CcOoSs §|Z| + Z + O(‘Z| ) y

Due to cancelations, it is not convenient to use the expression (30) directly as
z — to0. Instead, we use (34) with v = £2/a and obtain

NS S P —3/2y| _ p 1,8/2 —3/2
F'(2) 477\/26 [1—|—O(z )] 77\/26 [1—|—O(z )

Vop
™z

F [1 + (9(273/2)} as z — +o0o

and

F'(2) ~ —L' [1 +sin <§|z|3/2) + 0(|z|_3/2)]

2m/|z

__ B {1_Sm(§|z|3/2)+o<|z|—3/2>}

2m/|z|

\/w[ (4 3/2) —3/2] L
iﬂ\/m Ccos 3|z| + O(|z] ) as z 00

Integrating these expressions and recalling that C' = 0 in (35), we obtain

F(2) L [1 + O(z—3/2)] _B

- 8z 21z

F @ﬁ [1 + (’)(z_3/2)} as z — +00

« 4.3/2

s’ [1 + (9(2_3/2)}

and
F(2) ~ VR [1+0027)] + 2R 1+ 0(z172)]
F Vap [Sin (§|z3/2> + (’)(|z_3/2)} as z — —00

27|z|

If 8 # 0, then F(z) — —sgn(f8)oo as z — 4o00. Since a8 > 0, we also get
F(z) — sgn(f)oo as z — —oo. Hence for every k > 0, k + F(z) is not sign-
definite for every 3 # 0.

Setting 3 = 0, we get F'(2) = —a[Ai(z)]? and since Ai(z) — 0 as z — +o0
sufficiently fast, we can define

F(2) = a / ()2, (39)

where the constant of integration is uniquely selected since C' = 0 in (35).
Hence, F(z) is sign-definite for every z € R and sgn(F) = sgn(«). We also
have F(z) — 0 as z — +oo and F(z) — sgn(a)oo as z — —oo. Hence, for
every k > 0, k + F(z) > 0 for every z € R if and only if a > 0 in (39). O
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Finally, we use the solution F(z) in (39) with a > 0 and show that the
solution A(p, -) in (27) and (29) decay to zero at infinity, satisfies the zero-mean
constraint, but is not square integrable for every p > 0.

Lemma 8. Let F' be given by (39) with o > 0 and let A be given by (27) with
(29). For every p > 0, we have A(p,7) — 0 as |7| — oo, [, A(p,7)dr =0, and

Alp,-) ¢ L*(R).
Proof. By chain rule, we have from (27) and (29)
6

G 02 oel(60)'/° + F(2))

A(pv T) =

where z = 7/(6p)/3. Since k + F(z) > 0 for every k > 0 and z € R, we
have A(p,-) € L2 (R). It remains to consider square integrability of A(p,-) at
infinity.
It follows from (39), see the proof of Lemma 7, that
(0% 4,3/2

F(z) ~ —e 37

—3/2 .
5 {1 +0O(z )} as z — +00

and
o _
F(z) ~ ;\/\z| [1 + O()7] 3/2)} as z — —o0.

Since F(z),F'(z) — 0 as z — 400, we have

Alp.) ~ =2 P () [14 O(el /)]
(0% 4.3/2

~ o352 —-3/2
27Tpe 5 [1+0(|z\ )} as z — +00, (40)

hence, A(p,-) € L?(7, 00) for any 7 > 1 and p > 0. However, since F'(z) — oo
and F'(z) — 0 as z — —o0, we have

6 F"(z)
(6p)%/% (6p)'/3 + F(2)
~ —\/\2% [cos (§|z|3/2> + O(|z|_3/2)} as z — —oo, (41)

where we have used the expansion

Alp,7) ~ — 1+ 0]

F'(z) ~ ¢ {cos (;1|z3/2) + (’)(|z3/2)} as z — —o0o.
71'

Hence, A(p,-) ¢ L*(—o0, ) for any 79 < —1 and p > 0. At the same time,
A(p,7) — 0 as 7 — oo and the zero-mean constraint is satisfied due to

z— 400
= O,

Z—— 00

6 F'(2)
AAW”“* 60172 (6)17° 1 F(2)

due to the decay of F'(z) — 0 as z — +o0. O
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FIGURE 1. The soliton solution in the form (27) with (29)
and (39) for v = 108 versus 7 for p = 1 (top left), p = 20 (top
right), p = 100 (bottom left), and p = 500 (bottom right)

Figure 1 shows a representative example of the solitary wave in the cKdV
equation (6), where A is plotted versus 7 for four values of p = 1,20, 100, 500.
The oscillatory tail behind the solitary wave ruins localization of the solitary
wave in L?(R). Similar to [27,28], we use very large value of « to detach the
solitary wave from the oscillatory tail. For larger values of p, the solitary wave
departs even further from the oscillatory tail but its amplitude also decays to
Zero.

4. Discussion

We have addressed here the justification of the ¢cKdV equation (6) in the
context of the radial waves diverging from the origin in the 2D regularized
Boussinesq equation (1). We have shown that the spatial dynamics and tem-
poral dynamics formulations of (1) are not well posed simultaneously. If the
temporal dynamics formulation is well posed, the spatial dynamics formula-
tion is ill posed and vice versa. We have justified the cKdV equation (6) in the
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FIGURE 2. The soliton solution in the form (42) with (39) for
a = 10% and ¢ = 0.1 versus ¢ for t = 50 (left) and ¢ = 100
(right)

case of the spatial dynamics formulation (4)—(5). The main result of Theorem
1 relies on the existence of smooth solutions of the cKdV equation (6) with the
zero-mean constraint (8) in the class of functions (9) with Sobolev exponent
5> % However, we have also showed in Theorem 2 that the class of solitary
wave solutions decaying at infinity satisfies the zero-mean constraint but fails
to be square integrable due to the oscillatory, weakly decaying tail as 7 — —o0.

This work calls for further study of the applicability of the cKdV equation
for the radial waves in nonlinear dispersive systems, such as the water wave
model or the two-dimensional Fermi-Pasta—Ulam lattice. Next we list several
open directions.

First, the solitary waves of the cKdV equation (6) can be written as the
approximate solutions of the radial Boussinesq equation (4) in the form:

P S
@R e P (Gts) (o (Sie)]T )

where F'(z) is given by (39) with @ > 0 and ¢ > 0 is the small parameter of
asymptotic expansions. These solitary waves can be considered for fixed ¢t > 0
as functions of r on (0,00), see Fig.2 for ¢ = 0.1. The solitary waves decay
very fast as  — 0 and decay as O(r~!) as r — oo, see (40) and (41). However,
they are still not square integrable in the radial variable because fooo ru(r,t)%dr
diverges for every ¢ > 0. In addition, the cKdV equation (6) is ill-posed as the
temporal dynamics formulation from ¢ =0 to ¢ > 0.

Second, it might be possible to consider the temporal formulation of
the ¢cKdV equation (6) and to justify it in the framework of the temporal
dynamics formulation of the Boussinesq equation (1) with ¢ = —1. One needs
to construct a stable manifold for the cKdV equation (6) and to prove the error
estimates on the stable manifold. The stable part of the linear semigroup for
the cKdV equation (6) has a decay rate of t= for t — oo due to A = —|k|'/3,
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which could be sufficient for the construction of the stable manifold. However,
one needs to combine the linear estimates with the nonlinear estimates.

Third, one can consider a well-posed 2D Boussinesq equation (1) with
o = —1 and to handle the ill-posed radial spatial dynamics formulation (4)-
(5) with the justification of the cKdV approximation as in Theorem 1 by using
the approach from [12,13]. This would involve working in spaces of functions
which are analytic in a strip in the complex plane. The oscillatory tails of the
cKdV approximation, see Fig.2, would now accumulate towards r — 0 for
the well-posed 2D Boussinesq equation, see Figure 4 in [28], with the rate of
O(r='/?) as r — 0 which is sufficient for fooo ru(r,t)%dt to converge for every
t>0.

We conclude that the most promising problem for future work is to justify
the temporal formulation of the cKdV equation (6) for the temporal formu-
lation of the 2D Boussinesq equation (1) with ¢ = —1, for which the solitary
waves are admissible in the L2-based function spaces. If this justification prob-
lem can be solved, one can then consider the transverse stability problem of
cylindrical solitary waves under the azimuthal perturbations within the ap-
proximation given by the cKP equation with the exact solutions found in
[28,31].
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