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On the long-wave approximation of solitary
waves in cylindrical coordinates

James Hornick, Dmitry E. Pelinovsky and Guido Schneider

Abstract. We address justification and solitary wave solutions of the cylin-
drical KdV equation which is formally derived as a long wave approxima-
tion of radially symmetric waves in a two-dimensional nonlinear dispersive
system. For a regularized Boussinesq equation, we prove error estimates
between true solutions of this equation and the associated cylindrical KdV
approximation in the L2-based spaces. The justification result holds in
the spatial dynamics formulation of the regularized Boussinesq equation.
We also prove that the class of solitary wave solutions considered previ-
ously in the literature does not contain solutions in the L2-based spaces.
This presents a serious obstacle in the applicability of the cylindrical KdV
equation for modeling of radially symmetric solitary waves since the long
wave approximation has to be performed separately in different space-
time regions.

1. Introduction

Long radially symmetric waves in a two-dimensional nonlinear dispersive sys-
tem can be modeled with the cylindrical Korteweg-de Vries (cKdV) equation.
The cKdV equation has been derived in [1–4] by perturbation theory from
the equations of the water wave problem in cylindrical coordinates to describe
radially symmetric waves going to infinity. See [5,6] for an overview about the
occurrence of this and other amplitude equations for the shallow water wave
problem.

Derivation of the cKdV equation is not straightforward compared to its
analog in rectangular coordinates, the classical KdV equation, and it is still an
active area of research in physics [7–10]. No mathematically rigorous results
have been derived for the justification of the cKdV equation, compared to the
rigorous approximation results available for the classical KdV equation after
the pioneering works [11–14]. The main objective of this paper is to prove an
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approximation result for the cKdV equation and to discuss the validity of this
approximation.

Although we believe that our methods can be applied to every nonlinear
dispersive wave system where the cKdV equation can be formally derived we
restrict ourselves in the following to the system given by a regularized Boussi-
nesq equation. The regularized Boussinesq equation in two spatial dimensions
can be written in the normalized form as

∂2
t u − Δu + σ∂2

t Δu = Δ(u2), (1)

with space variable x = (x1, x2) ∈ R
2, time variable t ∈ R, Laplacian Δ =

∂2
x1

+ ∂2
x2

, and a smooth solution u = u(x, t) ∈ R. The normalized parameter
σ = ±1 determines the dispersion relation of linear waves u ∼ eik·x−iωt for
k = (k1, k2) ∈ R

2 in the form:

ω2 =
|k|2

1 − σ|k|2 , k ∈ R
2. (2)

It follows from the dispersion relation (2) and the standard analysis of well-
posedness [15,16] that the initial-value problem for (1) with the initial data

u|t=0 = u0(x), ∂tu|t=0 = u1(x), x ∈ R
2, (3)

is locally well-posed in Sobolev spaces of sufficient regularity for σ = −1 and
ill-posed for σ = +1.

Remark 1. To justify the cKdV equation, we shall use the spatial dynamics
formulation with the radius r :=

√
x2
1 + x2

2 as evolutionary variable. It turns
out that due to the dispersion term σ∂2

t Δu in (1) the spatial dynamics formu-
lation and the temporal dynamics formulation are not well posed simultane-
ously. If the temporal dynamics formulation is well posed, the spatial dynamics
formulation is ill posed and vice versa.

The radial spatial dynamics formulation of the regularized Boussinesq
equation (1) is obtained by introducing the radial variable r =

√
x2
1 + x2

2 and
rewriting (1) for u = u(r, t) with Δ = ∂2

r + 1
r ∂r in the form:

(∂2
r + r−1∂r)(u − σ∂2

t u + u2) = ∂2
t u. (4)

The associated spatial dynamics problem is given by

u|r=r0 = u0(t), ∂ru|r=r0 = u1(t), t ∈ R, (5)

for some r0 > 0. It is clear that the spatial evolution of (4) with “initial
data” in (5) is locally well-posed for σ = 1 and ill-posed for σ = −1, see
Theorem 3. In Sect. 2 we derive the cKdV equation for long waves of the radial
Boussinesq equation (4) in case σ = 1. The cKdV approximation is given by
u(r, t) = ε2A(ε3r, ε(t−r)) with ε being a small parameter and A(ρ, τ) satisfying
the following cKdV equation

2∂ρA + ρ−1A + ∂3
τA = ∂τ (A2), (6)

where τ := ε(t − r) ∈ R and ρ := ε3r ≥ ρ0 for some ρ0 > 0 are rescaled
versions of the variables (r, t) in the traveling frame and A(ρ, τ) ∈ R is the
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small-amplitude approximation for u(r, t) ∈ R. We have to impose the spatial
dynamics formulation for the cKdV equation (6) with the initial data

A|ρ=ρ0 = A0(τ), τ ∈ R. (7)

It follows from the contraction mapping principle applied to the KdV equation
[17] and the boundedness of the linear term ρ−1A for ρ ≥ ρ0 > 0 that the
initial-value problem for (6) with “initial data” in (7) is locally well-posed for
A0 ∈ Hs(R) with any s > 3

4 . Moreover, if
∫
R

A0dτ = 0, then
∫

R

A(ρ, τ)dτ = 0, ρ ≥ ρ0, (8)

which implies that the unique local solution of (6)–(7) satisfies

A ∈ C0([ρ0, ρ1],Hs(R)) and ∂−1
τ A ∈ C0([ρ0, ρ1],Hs−2(R)) (9)

for some ρ1 > ρ0 if A0 ∈ Hs(R) and ∂−1
τ A ∈ Hs−2(R), see Lemma 2.

The main approximation result is given by the following theorem.

Theorem 1. Fix sA > 17
2 , ρ1 > ρ0 > 0, and C1 > 0. Then there exist

ε0 > 0 and C0 > 0 such that for all ε ∈ (0, ε0) the following holds. Let
A ∈ C0([ρ0, ρ1],HsA(R)) be a solution of the cKdV equation (6) with

sup
ρ∈[ρ0,ρ1]

(‖A(ρ, ·)‖HsA + ‖∂−1
τ A(ρ, ·)‖HsA−2) ≤ C1.

Then there are solutions (u, ∂ru) ∈ C0([ρ0ε−3, ρ1ε
−3],Hs(R) × Hs(R)) of the

radial Boussinesq equation (4) with s > 1
2 satisfying

sup
r∈[ρ0ε−3,ρ1ε−3]

sup
t∈R

|u(r, t) − ε2A(ε3r, ε(t − r))| ≤ C0ε
7/2.

Remark 2. The proof of Theorem 1 goes along the lines of the associated
proof for validity of the KdV approximation in [13,14]. However, there are new
difficulties which have to be overcome. The major point is that a vanishing
mean value as in (8) is required for the solutions of the cKdV equation (6), a
property which fortunately is preserved by the evolution of the cKdV equation.
Subsequently, a vanishing mean value is also required for the solutions of the
radial Boussinesq equation (4). However, this property is not preserved in the
spatial evolution of the radial Boussinesq equation (4). We use a nonlinear
change of variables from u(r, t) to v(r, t) in Sect. 2 in order to preserve the
vanishing mean value in the spatial evolution.

The cKdV equation (6) admits exact solutions for solitary waves due to
its integrability [18–20]. These exact solutions have important physical appli-
cations [21–25], which have continued to stimulate recent research [26–28]. It
was observed that parameters of the exact solutions of the cKdV equation
agree well with the experimental and numerical simulations of solitary waves.
However, the solitary wave solutions of the cKdV equation do not decay suffi-
ciently well at infinity [29] and hence it is questionable how such solutions can
be described in the radial spatial dynamics of the Boussinesq equation in the
mathematically rigorous sense.
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We address the solitary wave solutions of the cKdV equation (6) in Sect. 3,
where we will use the theory of Airy functions and give a more complete char-
acterization of the solitary wave solutions compared to previous similar results,
e.g. in Appendix A of [29]. The following theorem presents the corresponding
result.

Theorem 2. Consider solutions of the cKdV equation (6) in the class of soli-
tary waves given by

A(ρ, τ) = −6∂2
τ log

[
1 +

1
(6ρ)1/3

F

(
τ

(6ρ)1/3

)]
, (10)

with some F ∈ C∞(R,R). All bounded solutions in the form (10) satisfy the
decay condition

A(ρ, τ) → 0 as |τ | → ∞
and the zero-mean constraint

∫

R

A(ρ, τ)dτ = 0

but fail to be square integrable, that is, A(ρ, ·) /∈ L2(R) for every ρ > 0.

Remark 3. The result of Theorem 2 is due to the slow decay of solitary wave
solutions (10) with

A(ρ, τ) ∼ |τ |−1/2 as τ → −∞.

We note that such solitary wave solutions satisfy A ∈ C0((0,∞), Ḣs(R)) for
any s > 0 but we are not aware of the local well-posedness for the cKdV
equation (6) in Ḣs(R) with s > 0. Consequently, the justification result of
Theorem 1 does not apply to the solitary waves of the cKdV equation (6) and
one needs to use matching techniques in different space-time regions in order
to consider radial solitary waves diverging from the origin, cf. [2,21,29].

Similar questions arise for the long azimuthal perturbations of the long
radial waves. A cylindrical Kadomtsev-Petviashvili (cKP) equation was also
proposed as a relevant model in [2,6]. Motivated from physics of fluids and
plasmas, problems of transverse stability of ring solitons were studied recently
in [28,30,31]. Other applications of the KP approximation are interesting in
the context of dynamics of square two-dimensional lattices based on the mod-
els of the Fermi-Pasta-Ulam type [32–34]. Radially propagating waves with
azimuthal perturbations are natural objects in lattices, see, e.g., [35,36], and
clarification of the justification of the cKdV equation is a natural first step
before justification of the cKP equation in nonlinear two-dimensional lattices.
We discuss further implication of the results of Theorems 1 and 2 for the cKdV
and cKP equations in Sect. 4.

Notation. Throughout this paper different constants are denoted with the
same symbol C if they can be chosen independently of the small parameter
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0 < ε 	 1. The Sobolev space Hs(R), s ∈ N of s-times weakly differentiable
functions is equipped with the norm

‖u‖Hs =

⎛

⎝
s∑

j=0

∫

R

|∂j
xu(x)|2dx

⎞

⎠

1/2

.

The weighted Lebesgue space L2
s(R), s ∈ R is equipped with the norm

‖û‖L2
s

=
(∫

R

|û(k)|2(1 + k2)sdk

)1/2

.

Fourier transform is an isomorphism between Hs(R) and L2
s(R) which allows

us to extend the definition of Hs(R) to all values of s ∈ R.

2. Justification of the cKdV equation

Here we prove Theorem 1 which states the approximation result for the cKdV
equation. The plan is as follows. In Sect. 2.1 we derive the cKdV equation (6)
for the radial Boussinesq equation (4) in case σ = 1. In Sect. 2.2 we estimate
the residual terms, i.e., the terms which remain after inserting the cKdV ap-
proximation into the radial Boussinesq equation. In Sect. 2.3 we prove a local
existence and uniqueness result for the radial spatial dynamics formulation.
In Sect. 2.4–2.5 we estimate the error made by this formal approximation in
the radial spatial dynamics by establishing L2- and H1-energy estimates. The
argument is completed in Sect. 2.6 by using the energy to control the approx-
imation error and by applying Gronwall’s inequality.

2.1. Derivation of the cKdV equation

We rewrite the radial Boussinesq equation (4) with σ = 1 as

(∂2
r + r−1∂r)(u − ∂2

t u + u2) = ∂2
t u. (11)

The cKdV approximation can be derived if r ≥ r0 > 0 is considered as the
evolutionary variable with the initial data (5). However, this evolutionary sys-
tem has the disadvantage that

∫
R

u(r, t)dt is not preserved in r, see Remarks
4 and 5. In order to overpass this technical difficulty, we rewrite (11) as

∂2
t (1 + ∂2

r + r−1∂r)u = (∂2
r + r−1∂r)(u + u2) (12)

and make the change of variables v := u + u2. For small v this quadratic
equation admits a unique solution for small u given by

u = v − v2 + N(v)

with analytic N(v) = O(v3). In variable v, the radial spatial evolution problem
is

(∂2
r + r−1∂r)v = ∂2

t (1 + ∂2
r + r−1∂r)(v − v2 + N(v)). (13)

The local existence and uniqueness of solutions of the initial-value problem
{

(∂2
r + r−1∂r)v = ∂2

t (1 + ∂2
r + r−1∂r)(v − v2 + N(v)), r > r0,

v|r=r0 = v0, ∂rv|r=r0 = v1
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can be shown for (v0, v1) ∈ Hs(R) × Hs(R) for every s > 1
2 , see Theorem 3.

We make the usual ansatz for the derivation of the KdV equation, namely

ε2ψcKdV(r, t) := ε2A(ε3r, ε(t − cr)), (14)

with τ := ε(t − cr) and ρ := ε3r, where c is the wave speed. Defining the
residual

Res(v) := −(∂2
r + r−1∂r)v + ∂2

t (1 + ∂2
r + r−1∂r)(v − v2 + N(v)) (15)

we find

Res(ε2ψcKdV) = −c2ε4∂2
τA + 2cε6∂ρ∂τA − ε8∂2

ρA

+ cε6ρ−1∂τA − ε8ρ−1∂ρA

+ ε4∂2
τA + c2ε6∂4

τA − 2cε8∂ρ∂
3
τA + ε10∂2

ρ∂2
τA

− cε8ρ−1∂3
τA + ε10ρ−1∂ρ∂

2
τA

− ε6∂2
τ (A2) − c2ε8∂4

τ (A2) + 2cε10∂ρ∂
3
τ (A2) − ε12∂2

τ∂2
ρ(A2)

+ cε10ρ−1∂3
τ (A2) − ε12ρ−1∂ρ∂

2
τ (A2)

+ ε2∂2
τ (1 + (−cε∂τ + ε3∂ρ)2 + ε3ρ−1(−cε∂τ + ε3∂ρ))N(ε2A)

where the last line is at least of order O(ε8). We eliminate the terms of O(ε4) by
choosing c2 = 1. The radial waves diverge from the origin if c = 1 and converge
towards the origin if c = −1. It makes sense to consider only outgoing radial
waves, so that we set c = 1 in the following.

With c = 1, the terms of O(ε6) are eliminated in Res(ε2ψcKdV) by choos-
ing A to satisfy the cKdV equation (6) rewritten here as

2∂ρA + ρ−1A + ∂3
τA − ∂τ (A2) = 0. (16)

By this choice we formally have

Res(ε2ψcKdV) = O(ε8).

We will estimate the residual terms rigorously in Sect. 2.2.

Remark 4. In our subsequent error estimates ∂−1
t has to be applied to Res(v)

in (15). However, this is only possible if the nonlinear change of variables
v = u + u2 is applied. This change of variables also allows us to use the
variable ∂−1

t ∂ru which played a fundamental role in the justification of the
KdV equation in [13,14] and which is necessary to obtain an L2-bound for the
approximation error.

2.2. Estimates for the residual

For estimating the residual Res(ε2ψcKdV) we consider a solution
A ∈ C([ρ0, ρ1],HsA(R,R)) of the cKdV equation (16) with some sA ≥ 0
suitably chosen below. Let

CA := sup
ρ∈[ρ0,ρ1]

‖A(ρ, ·)‖HsA < ∞. (17)
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With c = 1 and A satisfying the cKdV equation (16), the residual is rewritten
as

Res(ε2ψcKdV) = −ε8∂2
ρA − ε8ρ−1∂ρA − 2ε8∂ρ∂

3
τA + ε10∂2

ρ∂2
τA

− ε8ρ−1∂3
τA + ε10ρ−1∂ρ∂

2
τA − ε8∂4

τ (A2) + 2ε10∂ρ∂
3
τ (A2)

− ε12∂2
τ∂2

ρ(A2) + ε10ρ−1∂3
τ (A2) − ε12ρ−1∂ρ∂

2
τ (A2)

+ ε2∂2
τ (1 + (−ε∂τ + ε3∂ρ)2 + ε3ρ−1(−ε∂τ + ε3∂ρ))N(ε2A)

We can express ρ-derivatives of A by τ -derivatives of A through the right-hand
side of the cKdV equation (16). Hence for replacing one ρ-derivative we need
three τ -derivatives. In this way, the term ε10∂2

ρ∂2
τA loses most derivatives,

namely eight τ -derivatives. Due to the scaling properties of the L2-norm w.r.t.
the scaling τ = ε(t − r), we are loosing ε−1/2 in the estimates, e.g., see [37].
As a result of the standard analysis, we obtain the following lemma.

Lemma 1. Let s ≥ 0. Assume (17) with sA = s + 8 and CA > 0. There exists
a Cres > 0 such that for all ε ∈ (0, 1] we have

sup
r∈[ρ0ε−3,ρ1ε−3]

‖Res(ε2ψcKdV)(r, ·)‖Hs ≤ Cresε
15
2 .

In the subsequent error estimates we also need estimates for ∂−1
t applied

to Res(ε2ψcKdV). The only terms in the residual which have no ∂t in front are
the ones collected in

ε8R1 = −ε8∂2
ρA − ε8ρ−1∂ρA.

When ∂ρA is replaced by the right-hand side of the cKdV equation (16), we
find

R1 =
1
2
(∂ρ + ρ−1)(ρ−1A + ∂3

τA − ∂τA2)

=
1
2
∂τ (∂ρ + ρ−1)(∂2

τA − A2) +
1
2
ρ−1∂ρA

=
1
4
∂τ (2∂ρ + ρ−1)(∂2

τA − A2) − 1
4
ρ−2A.

Therefore, all terms in the residual can be written as derivatives in τ except of
the term −(4ρ2)−1A. The operator ∂−1

τ , respectively a multiplication with 1
ik

in the Fourier space, can be applied to −(4ρ2)−1A only if A has a vanishing
mean value and its Fourier transform decays as O(|k|) for k → 0. This is why
we enforce the vanishing mean value as in (8) and consider solutions of the
cKdV equation in the class of functions (9). Such solutions are given by the
following lemma.

Lemma 2. Fix sA > 3
4 , ρ0 > 0, and pick A0 ∈ HsA(R) such that ∂−1

τ A0 ∈
HsA−2(R). There exist C > 0 and ρ1 > ρ0 such that the cKdV equation
(16) possesses a unique solution A ∈ C0([ρ0, ρ1],HsA(R)) with A|ρ=ρ0 = A0

satisfying

sup
ρ∈[ρ0,ρ1]

(‖A(ρ, ·)‖HsA + ‖∂−1
τ A(ρ, ·)‖HsA−2) ≤ C.
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Proof. The cKdV equation (16) possesses a unique solution
A ∈ C0([ρ0, ρ1],HsA(R)) for sA > 3

4 , see [17]. To obtain the estimate on
B := ∂−1

τ A, we rewrite (16) in the form:

2∂ρB + ρ−1B + ∂2
τA − A2 = 0.

Since B0 := ∂−1
τ A0 ∈ HsA−2(R), integration of this equation with A ∈

C0([ρ0, ρ1],HsA(R)) yields B ∈ C0([ρ0, ρ1],HsA−2(R)). �

For estimating the residual Res(ε2ψcKdV) we consider a solution A ∈
C0([ρ0, ρ1],HsA(R)) of the cKdV equation (16) with

CA,B := sup
ρ∈[ρ0,ρ1]

(‖A(ρ, ·)‖HsA + ‖∂−1
τ A(ρ, ·)‖HsA−2) < ∞, (18)

and with sA > 3
4 being sufficiently large. Due to the correspondence ∂−1

t =
ε−1∂−1

τ we have the following lemma.

Lemma 3. Let s ≥ 0. Assume (18) with sA = s+8 and CA,B > 0. There exists
a Cres > 0 such that for all ε ∈ (0, 1] we have

sup
r∈[ρ0ε−3,ρ1ε−3]

‖∂−1
t Res(ε2ψcKdV )(r, ·)‖Hs ≤ Cresε

13
2 .

Remark 5. Without the transformation v = u + u2 which converts (12) into
(13), the terms in the residual Res(u) constructed similarly to (15) which have
no ∂t in front would be

−ε8∂2
ρA − ε8ρ−1∂ρA − ε10∂2

ρ(A2) − ε10ρ−1∂ρ(A2).

As above by replacing ∂ρA by the right-hand side of the cKdV equation (16) we
gain derivatives in τ . However, due to the ρ−1A term in (16) among other terms
we would produce terms of the form ε8ρ−2A and ε10ρ−2A2. The operator ∂−1

τ

can only be applied to these terms if A and A2 have a vanishing mean value.
However, A2 can only have a vanishing mean value if A vanishes identically.
Moreover, it doesn’t help to consider ∂2

ρ∂−1
τ (A2) and ρ−1∂ρ∂

−1
τ (A2) directly

since the cKdV equation (16) does not preserve the L2-norm of the solutions.
Therefore, the transformation v = u + u2 is essential for our justification
analysis.

2.3. Local existence and uniqueness

Here we prove the local existence and uniqueness of the solutions of the second-
order evolution equation (13), which we rewrite as

(∂2
r + r−1∂r)(1 − ∂2

t )v = ∂2
t v + ∂2

t (1 + ∂2
r + r−1∂r)(−v2 + N(v)).

By using B2 := ∂2
t (1 − ∂2

t )−1, we rewrite the evolution problem in the form:

(∂2
r + r−1∂r)v = B2v + B2(1 + ∂2

r + r−1∂r)(−v2 + N(v))

= B2v + B2(−v2 + N(v)) + r−1B2(−2v + N ′(v))∂rv

+ B2
[
(−2v + N ′(v))∂2

rv + (−2 + N ′′(v))(∂rv)2
]
. (19)
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The operator B2 is bounded in Sobolev space Hs(R) for every s ∈ R. The
second-order evolution equation (19) can be rewritten as a first-order system
by introducing w := ∂rv such that

{
∂rv = w,
∂rw = f(v, w), (20)

where

f(v, w) = −r−1w +
[
1 − B2(−2v + N ′(v))·]−1 B2

[
v − v2 + N(v) + (−2 + N ′′(v))w2

]
.

Since N(v) = O(v3) for small v, the right hand side of system (20) for suf-
ficiently small v is locally Lipschitz-continuous in Hs(R) × Hs(R) for every
s > 1

2 due to Sobolev’s embedding theorem. The following local existence and
uniqueness result holds due to the Picard-Lindelöf theorem.

Theorem 3. Fix s > 1
2 and r0 > 0. There exists a δ0 > 0 such that for all

δ ∈ (0, δ0) and (v0, w0) ∈ Hs(R)×Hs(R) with ‖v0‖Hs ≤ δ, there exists r1 > r0
and a unique solution (v, w) ∈ C0([r0, r1],Hs(R)×Hs(R)) of system (20) with
(v, w)|r=r0 = (v0, w0).

Corollary 1. There exists a unique solution (v, ∂rv) ∈ C0([r0, r1],Hs(R) ×
Hs(R)) of the second-order evolution equation (13) for the corresponding
(v, ∂rv)|r=r0 = (v0, w0).

Remark 6. A combination of the local existence and uniqueness result of The-
orem 3 with the subsequent error estimates, used as a priori estimates, guar-
antees the existence and uniqueness of the solutions of equations for the error
terms, see equation (21), as long as the error is estimated to be small.

2.4. The L2-error estimates

We introduce the error function R through the decomposition

v = ε2ψcKdV + εβR

with ψcKdV(r, t) = A(ρ, τ) and β := 7
2 to be obtained from the energy esti-

mates, see Sect. 2.6. The error function R satisfies

0 = (∂2
r + r−1∂r)R − ∂2

t (1 + ∂2
r + r−1∂r)R

+ 2ε2∂2
t (1 + ∂2

r + r−1∂r)(AR) + εβ∂2
t (1 + ∂2

r + r−1∂r)(R2)

− ε−β∂2
t (1 + ∂2

r + r−1∂r)(N(ε2A + εβR) − N(ε2A))

− ε−βRes(ε2A). (21)

Before we start to estimate the error we note that there is no problem with
regularity of solutions of equation (21) in the following sense. Rewriting (21) as
(19) and (20) in Sect. 2.3 shows that if (R, ∂rR) ∈ C0([r0, r1],Hs(R)×Hs(R)),
then ∂2

rR(r, ·) has the same regularity. In particular, we have the estimate:

Lemma 4. There exist constant Cl and a smooth monotone function Cn such
that for all ε ∈ (0, 1) we have

‖∂2
rR(r, ·)‖L2 ≤ ε

15
2 −βCres + Cl(1 + ε2CA)(‖R(r, ·)‖L2 + ‖∂rR(r, ·)‖L2 )

+ εβCn(‖R(r, ·)‖L∞ + ‖∂rR(r, ·)‖L∞ )(‖R(r, ·)‖L2 + ‖∂rR(r, ·)‖L2 ), (22)
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where Cres is defined in Lemma 1 and CA is defined in (17).

Remark 7. The difficulty in estimating the error R comes from fact that the
error equation (21) contains the linear terms of order O(ε2) while we have
to bound the error on the interval [ε−3r0, ε

−3r1] of length O(ε−3). We get
rid of this mismatch of powers in ε by writing the terms of order O(ε2) as
derivatives in r such that these can be either included in the balance of energy
or be written as terms where derivatives fall on A which allows us to estimate
these terms to be of order O(ε3).

We follow the approach used in the energy estimates for the KdV ap-
proximation for obtaining an H1-estimate for R [13,14]. To obtain first the
L2-estimates for R, we multiply (21) with −∂r∂

−2
t R and integrate it w.r.t.

t. The term −∂r∂
−2
t R is defined via its Fourier transform w.r.t. t, i.e., with

abuse of notation, by ∂−1
t R = F−1((ik)−1R̂). All integrals in t are considered

on R and Parseval’s equality is used when it is necessary. We report details of
computations as follows.

i) From the linear terms in R we then obtain

s1 = −
∫

(∂2
rR)(∂r∂

−2
t R)dt =

1
2

d

dr

∫
(∂r∂

−1
t R)2dt,

s2 = −
∫

(r−1∂rR)(∂r∂
−2
t R)dt = r−1

∫
(∂r∂

−1
t R)2dt,

s3 =
∫

(∂2
t R)(∂r∂

−2
t R)dt =

1
2

d

dr

∫
R2dt,

s4 =
∫

(∂2
t ∂2

rR)(∂r∂
−2
t R)dt =

1
2

d

dr

∫
(∂rR)2dt,

s5 =
∫

(r−1∂2
t ∂rR)(∂r∂

−2
t R)dt = r−1

∫
(∂rR)2dt.

ii) From the mixed terms in AR we obtain

smixed = −2ε2
∫

(∂2
t (1 + ∂2

r + r−1∂r)(AR))(∂r∂
−2
t R)dt

= −2ε2
∫

((1 + ∂2
r + r−1∂r)(AR))(∂rR)dt = s6 + s7 + s8,

where

s6 := −2ε2
∫

(AR)(∂rR)dt,

s7 := −2ε2
∫

(∂2
r (AR))(∂rR)dt,

s8 := −2ε2
∫

(r−1∂r(AR))(∂rR)dt.

We find

s6 = −ε2
d

dr

∫
AR2dt + ε2

∫
(∂rA)R2dt,
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where the second term is estimated by
∣∣
∣∣ε

2

∫
(∂rA)R2dt

∣∣
∣∣ ≤ ε2‖∂rA‖L∞‖R‖2L2

which is O(ε3) since ∂rA = −ε∂τA + ε3∂ρA by the chain rule. Next we
have

s7 = −2ε2
∫

(∂2
rA)R(∂rR)dt − 3ε2

∫
(∂rA)(∂rR)2dt − ε2

d

dr

∫
A(∂rR)2dt,

which are estimated by
∣∣∣∣2ε2

∫
(∂2

rA)R(∂rR)dt

∣∣∣∣ ≤ 2ε2‖∂2
rA‖L∞‖R‖L2‖∂rR‖L2 ,

∣∣
∣∣3ε2

∫
(∂rA)(∂rR)2dt

∣∣
∣∣ ≤ 3ε2‖∂rA‖L∞‖∂rR‖2L2 .

These terms are at least of order O(ε3) since ∂rA = O(ε) and ∂2
rA =

O(ε2) by the chain rule. For the last term, we obtain the estimate

|s8| ≤ 2ε2r−1‖∂rA‖L∞‖R‖L2‖∂rR‖L2 + 2ε2r−1‖A‖L∞‖∂rR‖2L2

which is of order O(ε5) since r ∈ [r0ε−3, ρ1ε
−3].

iii) From the quadratic terms in R we obtain

squad = −εβ

∫
(∂2

t (1 + ∂2
r + r−1∂r)(R2))(∂r∂

−2
t R)dt

= −εβ

∫
((1 + ∂2

r + r−1∂r)(R2))(∂rR)dt = s9 + s10 + s11,

where

s9 := −εβ

∫
R2(∂rR)dt = −1

3
εβ d

dr

∫
R3dt,

s10 := −εβ

∫
(∂2

r (R2))(∂rR)dt = −εβ d

dr

∫
R(∂rR)2dt − εβ

∫
(∂rR)3dt,

s11 := −εβ

∫
(r−1∂r(R2))(∂rR)dt.

The remaining terms can be estimated by
∣∣∣∣ε

β

∫
(∂rR)3dt

∣∣∣∣ ≤ εβ‖∂rR‖L∞‖∂rR‖2L2 ,

∣∣
∣∣ε

β

∫
(r−1∂r(R2))(∂rR)dt

∣∣
∣∣ ≤ 2εβr−1‖R‖L∞‖∂rR‖2L2 .

iv) For the terms collected in N we have

sN = ε−β

∫
(∂2

t (1 + ∂2
r + r−1∂r)(N(ε2A + εβR) − N(ε2A)))(∂r∂

−2
t R)dt

= ε−β

∫
((1 + ∂2

r + r−1∂r)(N(ε2A + εβR) − N(ε2A)))(∂rR)dt
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Since N(v) is analytic in v we have the representation N(v) =
∑∞

n=3 anvn,
with coefficients an ∈ R, and so we find

ε−β(N(ε2A + εβR) − N(ε2A)) = ε−β
∞∑

n=3

an

n∑

j=1

(
n
j

)
(ε2A)n−j(εβR)j .

such that these terms are at least of order O(ε4) and make no problems
for the estimates w.r.t. powers of ε. However, we have to be careful about
the regularity of these terms. As an example, we look at the terms with
most time derivatives, namely

∫
∂2

r (An−jRj)(∂rR)dt = s12 + s13 + s14,

where

s12 :=
∫

(∂2
r (An−j))Rj(∂rR)dt,

s13 := 2
∫

(∂r(An−j))(∂r(Rj))(∂rR)dt,

s14 :=
∫

An−j(∂2
r (Rj))(∂rR)dt

= j(j − 1)
∫

An−jRj−2(∂rR)3dt + j

∫
An−jRj−1(∂2

rR)(∂rR)dt.

The second derivatives ∂2
rR is controlled in terms of R and ∂rR by means

of (22). As a result, there exists a constant Cl and a smooth monotone
function Cn such that for all ε ∈ (0, 1) we have

|sN | ≤ ε4Cl(‖R‖2L2 + ‖∂rR‖2L2)

+ ε2+βCn(‖R‖L∞ + ‖∂rR‖L∞)(‖R‖2L2 + ‖∂rR‖2L2).

v) The residual term gives

s15 = ε−β

∫
(Res(ε2A))(∂r∂

−2
t R)dt = −ε−β

∫
∂−1

t (Res(ε2A))(∂r∂
−1
t R)dt.

It is estimated by

|s15| ≤ Cresε
13
2 −β‖∂r∂

−1
t R‖L2 ,

where Cres is defined in Lemma 3.

Remark 8. Without the change of variables v = u+u2 we would get addition-
ally the following mixed terms

−2ε2
∫

(∂2
r (AR))(∂r∂

−2
t R)dt − 2ε2

∫
(r−1∂r(AR))(∂r∂

−2
t R)dt

which cannot be written in an obvious manner as sums of a derivative w.r.t. r
and higher order terms. Without the change of variables v = u + u2 according
to Remark 5 we cannot estimate ∂−1

t (Res(ε2A)) nor the counterpart to s15.
This emphasizes again the necessity of the change of variables v = u + u2 in
order to replace (12) with (13).
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2.5. The H1-error estimates

The energy quantity will be constructed in Sect. 2.6 based on the derivative
formulas for s1, s3, s4, and other terms. It will be used for estimating the
terms which we were not able to write as derivatives w.r.t. r. Since we need
estimates for ‖R‖L∞ we will use Sobolev’s embedding

‖f‖L∞ ≤ C‖f‖H1 , ∀f ∈ H1(R) (23)

and hence we have to extend the energy by additional terms involving ‖∂tR‖2L2 .
To do so, we proceed here as in Sect. 2.4 but now for the L2-error estimates of
the t-derivatives.

Based on the product rule

‖∂t(uv)‖L2 ≤ ‖u‖L∞‖∂tv‖L2 + ‖v‖L∞‖∂tu‖L2 . (24)

we have the following generalization of the bound (22) in Lemma 4.

Lemma 5. There exist constant Cl, Ct,res and a smooth monotone function Cn

such that for all ε ∈ (0, 1) we have

‖∂2
rR(r, ·)‖H1 ≤ ε

15
2 −βCres + Cl(1 + ε2CA)(‖R(r, ·)‖H1 + ‖∂rR(r, ·)‖H1 )

+ Cn(‖R(r, ·)‖L∞ + ‖∂rR(r, ·)‖L∞ )εβ(‖R(r, ·)‖H1 + ‖∂rR(r, ·)‖H1 ),

(25)

where Cres is defined in Lemma 1 and CA is defined in (17).

To get the H1-error estimates, we multiply (21) by ∂rR and then integrate
w.r.t. t. We report details of computations as follows.

i) From the linear terms in R we obtain

r1 =
∫

(∂2
rR)(∂rR)dt =

1
2

d

dr

∫
(∂rR)2dt,

r2 =
∫

(r−1∂rR)(∂rR)dt = r−1

∫
(∂rR)2dt,

r3 = −
∫

(∂2
t R)(∂rR)dt =

1
2

d

dr

∫
(∂tR)2dt,

r4 = −
∫

(∂2
t ∂2

rR)(∂rR)dt =
1
2

d

dr

∫
(∂r∂tR)2dt,

r5 = −
∫

(∂2
t r−1∂rR)(∂rR)dt = r−1

∫
(∂r∂tR)2dt.

ii) From the mixed terms in AR we obtain

rmixed = 2ε2
∫

(∂2
t (1 + ∂2

r + r−1∂r)(AR))(∂rR)dt

= −2ε2
∫

((1 + ∂2
r + r−1∂r)∂t(AR))(∂r∂tR)dt = r6 + r7 + r8,
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where

r6 := −2ε2
∫

(∂t(AR))(∂r∂tR)dt,

r7 := −2ε2
∫

(∂2
r∂t(AR))(∂r∂tR)dt,

r8 := −2ε2
∫

(r−1∂r∂t(AR))(∂t∂rR)dt.

We find

r6 = −2ε2
∫

(∂tA)R(∂r∂tR)dt − ε2
d

dr

∫
A(∂tR)2dt + ε2

∫
(∂rA)(∂tR)2dt,

which can be estimated as
∣∣∣
∣2ε2

∫
(∂tA)R(∂r∂tR)dt

∣∣∣
∣ ≤ 2ε2‖∂tA‖L∞‖R‖L2‖∂r∂tR‖L2 ,

∣∣∣∣ε
2

∫
(∂rA)(∂tR)2dt

∣∣∣∣ ≤ ε2‖∂rA‖L∞‖∂tR‖2L2 .

These terms are at least of order O(ε3) since ∂rA and ∂tA are of order
O(ε) by the chain rule. Next we estimate r7 for which we note that

d

dr

∫
A(∂r∂tR)2dt =

∫
(∂rA)(∂r∂tR)2dt + 2

∫
A(∂r∂tR)(∂2

r∂tR)dt

and

∂2
r∂t(AR) = A∂2

r∂tR + 2(∂rA)∂r∂tR + (∂tA)∂2
rR

+ 2(∂t∂rA)∂rR + (∂2
rA)∂tR + (∂2

r∂tA)R.

As a result, we obtain

r7 = −ε2
d

dr

∫
A(∂r∂tR)2dt + r7,a + r7,b + r7,c + r7,d + r7,e

with

r7,a := −3ε2
∫

(∂rA)(∂r∂tR)2dt,

r7,b := −2ε2
∫

(∂tA)(∂2
rR)(∂r∂tR)dt,

r7,c := −4ε2
∫

(∂t∂rA)(∂rR)(∂r∂tR)dt,

r7,d := −2ε2
∫

(∂2
rA)(∂tR)(∂r∂tR)dt,

r7,e := −2ε2
∫

(∂2
r∂tA)R(∂r∂tR)dt.
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We estimate

|r7,a| ≤ 3ε2‖∂rA‖L∞‖∂r∂tR‖2L2 ,

|r7,b| ≤ 2ε2‖∂tA‖L∞‖∂2
rR‖L2‖∂r∂tR‖L2 ,

|r7,c| ≤ 4ε2‖∂t∂rA‖L∞‖∂rR‖L2‖∂r∂tR‖L2 ,

|r7,d| ≤ 2ε2‖∂2
rA‖L∞‖∂tR‖L2‖∂r∂tR‖L2 ,

|r7,e| ≤ 2ε2‖∂2
r∂tA‖L∞‖R‖L2‖∂r∂tR‖L2 .

All these terms are at least of order O(ε3) because of the derivatives on
A in r and t. Moreover, we can use (22) for estimating ‖∂2

rR‖L2 . The last
mixed term is decomposed with the product rule as

r8 = r8,a + r8,b + r8,c + r8,d,

where

r8,a := −2ε2
∫

r−1(∂r∂tA)R(∂r∂tR)dt,

r8,b := −2ε2
∫

r−1(∂tA)(∂rR)(∂r∂tR)dt,

r8,c := −2ε2
∫

r−1(∂rA)(∂tR)(∂r∂tR)dt,

r8,d := −2ε2
∫

r−1A(∂r∂tR)2dt.

We estimate

|r8,a| ≤ 2ε2r−1‖∂r∂tA‖L∞‖R‖L2‖∂r∂tR‖L2 ,

|r8,b| ≤ 2ε2r−1‖∂tA‖L∞‖∂rR‖L2‖∂r∂tR‖L2 ,

|r8,c| ≤ 2ε2r−1‖∂rA‖L∞‖∂tR‖L2‖∂r∂tR‖L2 ,

|r8,d| ≤ 2ε2r−1‖A‖L∞‖∂r∂tR‖2L2 .

iii) From the quadratic terms in R we obtain

rquad = εβ

∫
(∂2

t (1 + ∂2
r + r−1∂r)(R2))(∂rR)dt

= −εβ

∫
((1 + ∂2

r + r−1∂r)∂t(R2))(∂r∂tR)dt = r9 + r10 + r11,

where

r9 := −2εβ

∫
R(∂tR)(∂r∂tR)dt,

r10 := −εβ

∫
(∂2

r∂t(R2))(∂r∂tR)dt,

r11 := −εβ

∫
r−1(∂r∂t(R2))(∂r∂tR)dt.

The first term is estimated by

|r9| ≤ 2εβ‖R‖L∞‖∂tR‖L2‖∂r∂tR‖L2 .
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The second term is rewritten by using
d

dr

∫
R(∂r∂tR)2dt =

∫
(∂rR)(∂r∂tR)2dt + 2

∫
R(∂r∂tR)(∂2

r∂tR)dt

and

∂2
r∂t(R2) = 2R∂2

r∂tR + 4(∂rR)∂r∂tR + 2(∂tR)∂2
rR

in the form

r10 = −εβ d

dr

∫
R(∂r∂tR)2dt + r10,a + r10,b

with

r10,a := −3εβ

∫
(∂rR)(∂r∂tR)2dt,

r10,b := −2εβ

∫
(∂tR)(∂2

rR)(∂r∂tR)dt.

The remainder terms are estimated as follows

|r10,a| ≤ 3εβ‖∂rR‖L∞‖∂r∂tR‖2L2 ,

|r10,b| ≤ 2εβ‖∂2
rR‖L∞‖∂tR‖L2‖∂r∂tR‖L2 ,

where we can use (25) and Sobolev’s embedding (23) to estimate ‖∂rR‖L∞

and ‖∂2
rR‖L∞ . The last quadratic term is decomposed with the product

rule as

r11 = r11,a + r11,b,

where

r11,a := −2εβ

∫
r−1R(∂r∂tR)2dt,

r11,b := −2εβ

∫
r−1(∂rR)(∂tR)(∂r∂tR)dt,

which we estimate by

|r11,a| ≤ 2εβr−1‖R‖L∞‖∂r∂tR‖2L2 ,

|r11,b| ≤ 2εβr−1‖∂rR‖L∞‖∂tR‖L2‖∂r∂tR‖L2 .

iv) For the terms collected in N we have

rN = −ε−β

∫
(∂2

t (1 + ∂2
r + r−1∂r)(N(ε2A + εβR) − N(ε2A)))(∂rR)dt

= ε−β

∫
((1 + ∂2

r + r−1∂r)∂t(N(ε2A + εβR) − N(ε2A)))(∂r∂tR)dt

Proceeding as for the L2-estimate and using the bound (25) on the second
derivative ∂2

rR in terms of R and ∂rR yields the existence of a constant
C14,l and a smooth monotone function C14,n such that for all ε ∈ (0, 1)
we have

|rN | ≤ C14,lε
4(‖R‖2H1 + ‖∂rR‖2H1)

+ C14,n(‖R‖L∞ + ‖∂rR‖L∞)ε2+β(‖R‖2H1 + ‖∂rR‖2H1).
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v) The residual term

r12 = −ε−β

∫
(Res(ε2A))(∂rR)dt

is estimated by

|r12| = Cresε
15
2 −β‖∂rR‖L2 ,

where Cres is defined in Lemma 1.

2.6. Energy estimates

We use the terms s1, s3, s4, r1, r3, r4, and the parts of s6, s7, s9, s10, r6, r7,
and r10 with derivatives in r to define the following energy

E = E0 + E1

with

E0 =
1
2

∫
R2dt +

1
2

∫
(∂r∂

−1
t R)2dt +

1
2

∫
(∂rR)2dt

+
1
2

∫
(∂tR)2dt +

1
2

∫
(∂rR)2dt +

1
2

∫
(∂r∂tR)2dt,

E1 = −ε2
∫

AR2dt − ε2
∫

A(∂rR)2dt − 1
3
εβ

∫
R3dt − εβ

∫
R(∂rR)2dt

− ε2
∫

A(∂tR)2dt − ε2
∫

A(∂r∂tR)2dt − εβ

∫
R(∂r∂tR)2dt.

The energy part E0 is an upper bound for the squared H1-norm of R, ∂−1
t R,

and ∂rR. Moreover, for all M > 0 there exists an ε1 > 0 such that for all
ε ∈ (0, ε1) we have

1
2
E0 ≤ E1 ≤ 3

2
E0

as long as E1/2 ≤ M . All other linear terms which are not contained in the
energy E have either a r−1 = ε3ρ−1 in front, namely s2, s5, s8, r2, r5, and r8,
or contain a time or space derivative of A, as parts of s6, s7, r6, and r7, and
so all other linear terms are at least of order O(ε3). All nonlinear terms have
at least a ε4 or εβ in front. The residual terms s15 and r16 are of order O(ε3)
if β is chosen as β = 7

2 . As a result, we estimate the rate of change of energy
E from the following inequality

d

dr
E ≤ Cε3E + Cε7/2E3/2 + Cε3E1/2

≤ 2Cε3E + Cε7/2E3/2 + Cε3, (26)

with a constant C independent of ε ∈ (0, ε1) as lomg as E1/2 ≤ M . Under the
assumption that Cε1/2E1/2 ≤ 1 we obtain

d

dt
E ≤ (2C + 1)ε3E + Cε3.
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Gronwall’s inequality immediately gives the bound

sup
t∈[0,T0/ε3]

E(t) = CT0e
(2C+1)T0 =: M = O(1)

and so sup
t∈[0,T0/ε3]

‖R(t)‖H1 = O(1). Finally choosing ε2 > 0 so small that

Cε
1/2
2 M1/2 ≤ 1 gives the required estimate for all ε ∈ (0, ε0) with ε0 =

min(ε1, ε2) > 0. Therefore, we have proved Theorem 1.

3. Solitary wave solutions of the cKdV equation

Here we prove Theorem 2. We look for solutions of the cKdV equation (6) in
the class of solitary waves represented in the form

A(ρ, τ) = −6∂2
τ log f(ρ, τ), (27)

which tranforms (6) to the following bilinear equation [20]:

2 [f∂ρ∂τf−(∂ρf)(∂τf)]+ρ−1f∂τf+f∂4
τf−4(∂τf)(∂3

τf)+3(∂2
τf)2=0. (28)

To prove Theorem 2, we analyze solutions of (28) in the self-similar form
[27,28,31]:

f(ρ, τ) = 1 +
1

(6ρ)1/3
F (z), z =

τ

(6ρ)1/3
(29)

with some F ∈ C∞(R,R). The form (27) and (29) yields (10). We give a
complete characterization for all possible solutions for F (z) and prove that
there exist no square integrable function A(ρ, τ) w.r.t. τ . The proof is based
on the three results obtained in the following three lemmas.

The first result gives the most general expression for F (z) in (29).

Lemma 6. The most general solution f(ρ, τ) of the bilinear equation (28) in
the self-similar form (29) with F ∈ C∞(R,R) is given by

F (z) = α
[
(w′

1)
2 − zw2

1

] ± 2
√

αβ [w′
1w

′
2 − zw1w2] + β

[
(w′

2)
2 − zw2

2

]
, (30)

where α, β ∈ R are arbitrary such that αβ ≥ 0 and w1(z) := Ai(z), w2(z) :=
Bi(z) are two linearly independent solutions of the Airy equation

w′′(z) − zw(z) = 0. (31)

Proof. Substituting (29) into (28) shows that the variables are separated and
F (z) satisfies an overdetermined system of two (linear and quadratic) differ-
ential equations:

F ′′′′(z) − 4zF ′′(z) − 2F ′(z) = 0 (32)

and

4F ′(z)[zF ′(z) + F (z) − F ′′′(z)] + 3[F ′′(z)]2 = 0. (33)

Let G(z) := −F ′(z). Then (32) reduces to the third-order equation

G′′′(z) − 4zG′(z) − 2G(z) = 0,
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the general solution of which is known (see 10.4.57 in [38]):

G(z) = α[Ai(z)]2 + β[Bi(z)]2 + γAi(z)Bi(z), (34)

where α, β, γ are arbitrary. Denoting w1(z) := Ai(z) and w2(z) := Bi(z), we
confirm that

d

dz
[(w′

1,2)
2 − zw2

1,2] = 2w′
1,2(w

′′
1,2 − zw1,2) − w2

1,2 = −w2
1,2

and
d

dz
[w′

1w
′
2 − zw1w2] = (w′′

1 − zw1)w′
2 + w′

1(w
′′
2 − zw2) − w1w2 = −w1w2

Hence, F ′(z) = −G(z) is integrated to the form

F (z) = C + α
[
(w′

1)
2 − zw2

1

]
+ β

[
(w′

2)
2 − zw2

2

]
+ γ [w′

1w
′
2 − zw1w2] , (35)

where C is an integration constant. The same constant C appears in the inte-
gration of (32) to the form

F ′′′(z) − 4zF ′(z) + 2F (z) = 2C. (36)

It remains to verify if the general solution (35) satisfies the quadratic equation
(33). Multiplying (36) by F ′′(z) and integrating, we obtain

[F ′′(z)]2 − 4z[F ′(z)]2 + 4F (z)F ′(z) = 4CF ′(z) + D, (37)

where D is another integration constant. On the other hand, substituting (36)
into (33) yields

[F ′′(z)]2 − 4z[F ′(z)]2 + 4F (z)F ′(z) =
8
3
CF ′(z). (38)

Comparison of (37) and (38) yields C = D = 0. Finally, we substitute (35)
into (38) with C = 0 and obtain

0 = [F ′′(z)]2 − 4z[F ′(z)]2 + 4F (z)F ′(z)

= (γ2 − 4αβ)(w1w
′
2 − w′

1w2)2,

where the Wronskian of two linearly independent solutions is nonzero, w1w
′
2 −

w′
1w2 �= 0. Hence, the system (32)-(33) is compatible for the solution (35) if

and only if C = 0 and γ = ±2
√

αβ with only two arbitrary constants α, β ∈ R.
�

The solution F (z) in (30) is real if and only αβ ≥ 0. The next result
shows that the expression (29) with this F is sign-definite (positive) if and
only if α ≥ 0 and β = 0.

Lemma 7. Let F be given by (30) with αβ ≥ 0. For every k > 0, we have
k + F (z) > 0 for every z ∈ R if and only if α ≥ 0 and β = 0.

Proof. We shall make use the asymptotic expansion of the Airy functions, see
10.4.59-60 and 10.4.63-64 in [38]:

⎧
⎪⎨

⎪⎩

Ai(z) ∼ 1
2
√

π 4
√

z
e− 2

3 z3/2
[
1 + O(z−3/2)

]
,

Bi(z) ∼ 1√
π 4

√
z
e

2
3 z3/2

[
1 + O(z−3/2)

]
,

as z → +∞
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and
⎧
⎪⎪⎨

⎪⎪⎩

Ai(z) ∼ 1√
π 4

√|z|

[
sin

(
2
3
|z|3/2 +

π

4

)
+ O(|z|−3/2)

]
,

Bi(z) ∼ 1√
π 4

√|z|

[
cos

(
2
3
|z|3/2 +

π

4

)
+ O(|z|−3/2)

]
,

as z → −∞

Due to cancelations, it is not convenient to use the expression (30) directly as
z → ±∞. Instead, we use (34) with γ = ±2

√
αβ and obtain

F ′(z) ∼ − α

4π
√

z
e− 4

3 z3/2
[
1 + O(z−3/2)

]
− β

π
√

z
e

4
3 z3/2

[
1 + O(z−3/2)

]

∓
√

αβ

π
√

z

[
1 + O(z−3/2)

]
as z → +∞

and

F ′(z) ∼ − α

2π
√|z|

[
1 + sin

(
4
3
|z|3/2

)
+ O(|z|−3/2)

]

− β

2π
√|z|

[
1 − sin

(
4
3
|z|3/2

)
+ O(|z|−3/2)

]

±
√

αβ

π
√|z|

[
cos

(
4
3
|z|3/2

)
+ O(|z|−3/2)

]
as z → −∞

Integrating these expressions and recalling that C = 0 in (35), we obtain

F (z) ∼ α

8πz
e− 4

3 z3/2
[
1 + O(z−3/2)

]
− β

2πz
e

4
3 z3/2

[
1 + O(z−3/2)

]

∓ 2
√

αβ

π

√
z

[
1 + O(z−3/2)

]
as z → +∞

and

F (z) ∼ α

π

√
|z|

[
1 + O(|z|−3/2)

]
+

β

π

√
|z|

[
1 + O(|z|−3/2)

]

∓
√

αβ

2π|z|
[
sin

(
4
3
|z|3/2

)
+ O(|z|−3/2)

]
as z → −∞

If β �= 0, then F (z) → −sgn(β)∞ as z → +∞. Since αβ ≥ 0, we also get
F (z) → sgn(β)∞ as z → −∞. Hence for every k ≥ 0, k + F (z) is not sign-
definite for every β �= 0.

Setting β = 0, we get F ′(z) = −α[Ai(z)]2 and since Ai(z) → 0 as z → +∞
sufficiently fast, we can define

F (z) = α

∫ ∞

z

[Ai(z′)]2dz′, (39)

where the constant of integration is uniquely selected since C = 0 in (35).
Hence, F (z) is sign-definite for every z ∈ R and sgn(F ) = sgn(α). We also
have F (z) → 0 as z → +∞ and F (z) → sgn(α)∞ as z → −∞. Hence, for
every k > 0, k + F (z) > 0 for every z ∈ R if and only if α ≥ 0 in (39). �
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Finally, we use the solution F (z) in (39) with α > 0 and show that the
solution A(ρ, ·) in (27) and (29) decay to zero at infinity, satisfies the zero-mean
constraint, but is not square integrable for every ρ > 0.

Lemma 8. Let F be given by (39) with α > 0 and let A be given by (27) with
(29). For every ρ > 0, we have A(ρ, τ) → 0 as |τ | → ∞,

∫
R

A(ρ, τ)dτ = 0, and
A(ρ, ·) /∈ L2(R).

Proof. By chain rule, we have from (27) and (29)

A(ρ, τ) = − 6
(6ρ)2/3

∂2
z log[(6ρ)1/3 + F (z)],

where z = τ/(6ρ)1/3. Since k + F (z) > 0 for every k > 0 and z ∈ R, we
have A(ρ, ·) ∈ L2

loc(R). It remains to consider square integrability of A(ρ, ·) at
infinity.

It follows from (39), see the proof of Lemma 7, that

F (z) ∼ α

8πz
e− 4

3 z3/2
[
1 + O(z−3/2)

]
as z → +∞

and

F (z) ∼ α

π

√
|z|

[
1 + O(|z|−3/2)

]
as z → −∞.

Since F (z), F ′(z) → 0 as z → +∞, we have

A(ρ, τ) ∼ −6
ρ
F ′′(z)

[
1 + O(|z|−3/2)

]

∼ − α

2πρ
e− 4

3 z3/2
[
1 + O(|z|−3/2)

]
as z → +∞, (40)

hence, A(ρ, ·) ∈ L2(τ0,∞) for any τ0 � 1 and ρ > 0. However, since F (z) → ∞
and F ′(z) → 0 as z → −∞, we have

A(ρ, τ) ∼ − 6
(6ρ)2/3

F ′′(z)
(6ρ)1/3 + F (z)

[
1 + O(|z|−3/2)

]

∼ −
√

6
√

ρ|τ |

[
cos

(
4
3
|z|3/2

)
+ O(|z|−3/2)

]
as z → −∞, (41)

where we have used the expansion

F ′′(z) ∼ α

π

[
cos

(
4
3
|z|3/2

)
+ O(|z|−3/2)

]
as z → −∞.

Hence, A(ρ, ·) /∈ L2(−∞, τ0) for any τ0 	 −1 and ρ > 0. At the same time,
A(ρ, τ) → 0 as τ → ±∞ and the zero-mean constraint is satisfied due to

∫

R

A(ρ, τ)dτ = − 6
(6ρ)1/3

F ′(z)
(6ρ)1/3 + F (z)

∣
∣∣∣

z→+∞

z→−∞
= 0,

due to the decay of F ′(z) → 0 as z → ±∞. �
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Figure 1. The soliton solution in the form (27) with (29)
and (39) for α = 108 versus τ for ρ = 1 (top left), ρ = 20 (top
right), ρ = 100 (bottom left), and ρ = 500 (bottom right)

Figure 1 shows a representative example of the solitary wave in the cKdV
equation (6), where A is plotted versus τ for four values of ρ = 1, 20, 100, 500.
The oscillatory tail behind the solitary wave ruins localization of the solitary
wave in L2(R). Similar to [27,28], we use very large value of α to detach the
solitary wave from the oscillatory tail. For larger values of ρ, the solitary wave
departs even further from the oscillatory tail but its amplitude also decays to
zero.

4. Discussion

We have addressed here the justification of the cKdV equation (6) in the
context of the radial waves diverging from the origin in the 2D regularized
Boussinesq equation (1). We have shown that the spatial dynamics and tem-
poral dynamics formulations of (1) are not well posed simultaneously. If the
temporal dynamics formulation is well posed, the spatial dynamics formula-
tion is ill posed and vice versa. We have justified the cKdV equation (6) in the
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Figure 2. The soliton solution in the form (42) with (39) for
α = 108 and ε = 0.1 versus t for t = 50 (left) and t = 100
(right)

case of the spatial dynamics formulation (4)–(5). The main result of Theorem
1 relies on the existence of smooth solutions of the cKdV equation (6) with the
zero-mean constraint (8) in the class of functions (9) with Sobolev exponent
s > 17

2 . However, we have also showed in Theorem 2 that the class of solitary
wave solutions decaying at infinity satisfies the zero-mean constraint but fails
to be square integrable due to the oscillatory, weakly decaying tail as τ → −∞.

This work calls for further study of the applicability of the cKdV equation
for the radial waves in nonlinear dispersive systems, such as the water wave
model or the two-dimensional Fermi–Pasta–Ulam lattice. Next we list several
open directions.

First, the solitary waves of the cKdV equation (6) can be written as the
approximate solutions of the radial Boussinesq equation (4) in the form:

u(r, t) = − 6

(6r)2/3

⎛

⎜
⎝

F ′′
(

t−r
(6r)1/3

)

(6r)1/3ε + F
(

t−r
(6r)1/3

) −

[
F ′

(
t−r

(6r)1/3

)]2

[
(6r)1/3ε + F

(
t−r

(6r)1/3

)]2

⎞

⎟
⎠ , (42)

where F (z) is given by (39) with α > 0 and ε > 0 is the small parameter of
asymptotic expansions. These solitary waves can be considered for fixed t > 0
as functions of r on (0,∞), see Fig. 2 for ε = 0.1. The solitary waves decay
very fast as r → 0 and decay as O(r−1) as r → ∞, see (40) and (41). However,
they are still not square integrable in the radial variable because

∫ ∞
0

ru(r, t)2dr
diverges for every t > 0. In addition, the cKdV equation (6) is ill-posed as the
temporal dynamics formulation from t = 0 to t > 0.

Second, it might be possible to consider the temporal formulation of
the cKdV equation (6) and to justify it in the framework of the temporal
dynamics formulation of the Boussinesq equation (1) with σ = −1. One needs
to construct a stable manifold for the cKdV equation (6) and to prove the error
estimates on the stable manifold. The stable part of the linear semigroup for
the cKdV equation (6) has a decay rate of t−3 for t → ∞ due to λ = −|k|1/3,
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which could be sufficient for the construction of the stable manifold. However,
one needs to combine the linear estimates with the nonlinear estimates.

Third, one can consider a well-posed 2D Boussinesq equation (1) with
σ = −1 and to handle the ill-posed radial spatial dynamics formulation (4)–
(5) with the justification of the cKdV approximation as in Theorem 1 by using
the approach from [12,13]. This would involve working in spaces of functions
which are analytic in a strip in the complex plane. The oscillatory tails of the
cKdV approximation, see Fig. 2, would now accumulate towards r → 0 for
the well-posed 2D Boussinesq equation, see Figure 4 in [28], with the rate of
O(r−1/2) as r → 0 which is sufficient for

∫ ∞
0

ru(r, t)2dt to converge for every
t > 0.

We conclude that the most promising problem for future work is to justify
the temporal formulation of the cKdV equation (6) for the temporal formu-
lation of the 2D Boussinesq equation (1) with σ = −1, for which the solitary
waves are admissible in the L2-based function spaces. If this justification prob-
lem can be solved, one can then consider the transverse stability problem of
cylindrical solitary waves under the azimuthal perturbations within the ap-
proximation given by the cKP equation with the exact solutions found in
[28,31].
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