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Abstract
A nonlocal derivative nonlinear Schrödinger equation describes modulations
of waves in a stratified fluid and a continuous limit of the Calogero–Moser–
Sutherland system of particles. For the defocusing version of this equation, we
prove the linear stability of the nonzero constant background for decaying and
periodic perturbations and the nonlinear stability for periodic perturbations.
For the focusing version of this equation, we prove the linear stability of the
nonzero constant background under a non-resonance condition on the initial
data and the nonlinear stability for sufficiently small periods. For both versions,
we characterize the traveling periodic wave solutions by using Hirota’s bilinear
method, both on the nonzero and zero backgrounds. For each family of travel-
ing periodic waves, we construct families of breathers which describe solitary
waves moving across the periodic background. A general breather solution
with N solitary waves propagating on the periodic background is derived in a
closed determinant form.
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1. Introduction

One of the main models of the modern nonlinear physics is the nonlinear Schrödinger (NLS)
equation which describes a slow modulation of small-amplitude, nearly harmonic waves [24,
34]. Due to the scaling transformation, the cubic NLS equation can be written in the dimen-
sionless form

iut =−uxx± |u|2u, u(x, t) : R×R 7→ C, (NLS±)

where the upper and lower signs correspond to the defocusing and focusing versions of this
model, respectively. For the defocusing NLS+ equation, localized perturbations of the zero
background scatter to zero as the time evolves and stable dark solitons propagate on a nonzero
constant background which is linearly and nonlinearly stable in the time evolution. For the
focusing NLS− equation, stable bright solitons propagate on the zero background due to
the balance between nonlinearity and dispersion whereas the nonzero constant background
is unstable with rogue waves appearing from nowhere and disappearing without any trace.
These phenomena were reviewed in [17, 20, 49].

The purpose of this work is to consider stability of the nonzero constant background and
propagation of solitary waves on the traveling periodic wave background in the nonlocal deriv-
ative NLS (NDNLS) equation. Due to the scaling transformation, the model can be written in
the dimensionless form

iut = uxx± u(i +H)
(
|u|2
)
x
, u(x, t) : R×R 7→ C, (NDNLS±)

where H is the Hilbert transform which can be defined on R either according to the following
integral formula,

H( f) :=
1
π
p. v.
ˆ ∞

−∞

f(y)dy
y− x

,

or according to the Fourier transform by H(eikx) = isgn(k)eikx, k ∈ R.
The NDNLS+ equation was derived in [45, 47] in the context of modulation theory for

internal waves in a stratified fluid. It appears as an asymptotic reduction of the integrable
Benjamin–Ono (BO) equation for the envelope of modulating wave packets. A more general
intermediate NLS equation was derived from an intermediate long-wave equation in [45]. The
intermediate NLS equation connects NLS+ in the limit of shallow fluid and NDNLS+ in the
limit of deep fluid. Integrability and existence of the Lax pair for the NDNLS+ equation was
established in [46] and was used in many studies of periodic and solitary waves [39–42].

The NDNLS− equation was obtained as a continuum limit for dynamics of particles in the
Calogero–Moser–Sutherland (CMS) system [1, equation (40)], see also [52] for review of the
CMS system. The NDNLS− equation is related to a Hamiltonian formulation of the complex
extension of the BO equation with a bi-directional wave propagation. The recent interest to
this model was inspired by applications of methods of harmonic analysis to weak turbulence
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in the integrable nonlocal equations with the localized data on the infinite line [28]. Global
well-posedness and blow-up in infinite or finite time were studied in [32, 33, 35–37]. Traveling
periodic waves and dynamics of the initial-value problem in the periodic domainwere analyzed
in [3–5]. Numerical approximations of the model with the spectral method were developed in
[2]. Coupled systems of nonlocal integrable equations were also discussed in [6, 7, 50].

In analogy with the cubic NLS± equations, the two versions of the NDNLS± equations
are referred to as ‘defocusing’ (upper sign) and ‘focusing’ (lower sign). However, we will
show here that the nonzero constant background does not exhibit the rogue wave phenomenon.
Solitary waves propagate steadily on the nonzero constant background as dark solitons for the
‘defocusing’ version [39, 45] and bright solitons for the ‘focusing’ version [28, 43]. The linear
stability of the nonzero constant background for decaying and periodic perturbations and the
nonlinear stability for periodic perturbations is proven for the NDNLS+ equation. The proof of
the linear and nonlinear stability for the NDNLS− equation holds only under some restrictions.

The traveling periodic wave background has been recently studied in the cubic NLS
equation [9, 10, 21] and the Korteweg–de Vries (KdV) equation [22, 29, 30] because it arises
naturally due to the gradient catastrophe of the wave profiles in the limit of small dispersion.
For the defocusing cubic NLS equation, dark solitons propagate on the stable traveling peri-
odic wave background [38, 48, 51] (see also [8, 31] for the KdV equation and [44] for the
defocusing modified KdV equation). For the focusing cubic NLS equation, bright breathers
and rogue waves arise on the unstable traveling periodic wave background [16, 23] (see also
[11, 15] for the cubic derivative NLS equation and [12, 13] for the discrete NLS and discrete
modified KdV equations).

We will show that solitary waves propagate steadily on the traveling periodic wave back-
ground in both versions of the NDNLS± equations. This suggests that the physics terminology
of the two versions as ‘defocusing’ and ‘focusing’ is not justified. We conjecture that the trav-
eling periodic wave is linearly stable with respect to small perturbations. The latter question
is left open for further studies. Compared to the propagation of solitary waves on the elliptic
traveling wave background in the NLS, KdV, and modified KdV equations, the correspond-
ing solutions for the NDNLS± equations are expressed by the elementary (trigonometric and
power) functions.

Propagation of solitary waves in the NDNLS± equations is very similar to the one in the BO
equation explored in our previous work [14]. For the defocusing NDNLS+ equation, we only
obtain dark solitons propagating on the traveling periodic wave background. For the focusing
NDNLS− equation, we obtain both bright and dark solitons on the traveling periodic wave
background. The characteristic properties of such solutions depend on the Lax spectrum asso-
ciated with the traveling periodic wave explored recently in [4] based on earlier work [25–27]
for the BO equation. From the technical point of view, we rely on the Hirota’s bilinear form
both for the NDNLS± equations and their Lax pair representation [39, 42, 43]. By degenera-
tion of the multi-periodic solutions, we obtain a closed determinant form for N solitary waves
propagating on the traveling periodic wave background.

Let us now summarize the main findings of this work.

• Theorem 1 gives the linear stability of the nonzero constant background for decaying per-
turbations in the defocusing case and for the initial data satisfying a non-resonance condition
in the focusing case.

• Theorem 2 gives the nonlinear stability of the nonzero constant background for periodic
perturbations in the defocusing case.

• Corollary 1 gives the nonlinear stability of the nonzero constant background for periodic
perturbations of sufficiently small periods in the focusing case.
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• Propositions 1 and 2 give the explicit solutions for the traveling periodic waves on the
nonzero constant background and their Lax spectrum.

• Theorem 3 gives the explicit solutions for the breathers on the traveling periodic waves.
General expressions are also given in section 4.4.

• Propositions 3 and 4 give the explicit solutions for the traveling periodic waves on the zero
background and their Lax spectrum in the focusing case.

• Theorem 4 and corollary 2 give the explicit solutions for the double-periodic waves on the
zero background and the breathers on the traveling periodic waves in the focusing case.
General expressions are also given in section 5.4.

The paper is organized as follows. Section 2 contains preliminary facts about the NDNLS±

equations. Linear and nonlinear stability of the nonzero constant solution is considered in
section 3. The traveling periodic waves, their Lax spectrum, and breathers on their background
are obtained in sections 4 and 5 for nonzero and zero constant backgrounds, respectively.
Section 6 concludes the paper.

2. Lax pair for the nonlocal derivative NLS equations

Both versions of the nonlocal derivative NLS equations can be rewritten as

iut = uxx+σu(i +H)
(
|u|2
)
x
, u(x, t) : R×R 7→ C, (2.1)

where the sign parameter σ is

σ =+1 ⇔ ‘defocusing’ and σ =−1 ⇔ ‘focusing’.

Several symmetries are identical between the NLS± and NDNLS± equations. The list includes
the translational and rotational symmetries

u(x, t) 7→ u(x+ x0, t+ t0)e
iθ0 , x0, t0,θ0 ∈ R, (2.2)

the Lorentz transformation

u(x, t) 7→ e−
i
2 cx+

i
4 c

2tu(x− ct, t) , c ∈ R, (2.3)

and the scaling symmetry

u(x, t) 7→ αu
(
α2x,α4t

)
, α > 0. (2.4)

The symmetry transformation (2.2) can be used to set the translational parameters of the trav-
eling periodic wave to zero. The Lorentz transformation (2.3) can be used to normalize the
profile of the traveling waves as Im(x)→±∞, see expressions (4.4) and (5.3) in propositions
1 and 3. The scaling transformation (2.4) can be used to normalize the nonzero constant back-
ground to unity, see expression (4.2), or the period of the traveling periodic wave on the zero
background to 2π, see remark 12.
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The nonlocal model (2.1) is a compatibility condition of the following linear system
ipx+λp+ uq+ = 0,
q+ −µq− +σūp= 0,
ipt+λ2p+λuq+ + i (uq+x − uxq+) = 0,
iq±t − 2iλq±x + q±xx+σq±

[
(±i +H)

(
|u|2
)
x

]
= 0,

(2.5)

where λ is the spectral parameter, ū denotes the complex conjugation of u, and (p,q+,q−) are
components of the eigenfunction, in which q+ and q− are analytic in the upper and lower half
of the complex plane of x, respectively. If we use the projection operators P± := 1

2 (1∓ iH),
then we have

q± = P±q± and 0= P∓q±. (2.6)

Although the linear system (2.5) has been derived previously, see, e.g. [43, 46], we add a
quick derivation by differentiating the first equation in t and the third equation in x:

ipxt+λpt+ utq
+ + uq+t = 0,

iptx+λ2px+λuxq
+ +λuq+x + i

(
uq+xx− uxxq

+
)
= 0.

Substituting pt and q
+
t from the third and fourth equations of the system (2.5) and px from the

first equation yields the nonlocal model (2.1) from the commutability condition pxt = ptx. The
second equation of system (2.5) does not appear in the compatibility condition, but it defines
q+ and q− by means of projections:

q+ =−σP+ (ūp) and q− = σµ−1P− (ūp) , (2.7)

where µ is an additional parameter to be determined.
Since −i∂x and P+ are self-adjoint operators in L2-based Hilbert spaces such as L2(R) or

L2
per, the Lax operator Lu : H1 ⊂ L2 → L2 given by

Lu :=−i∂x+σuP+ (ū ·) (2.8)

is self-adjoint. By the spectral theorem in Hilbert space L2, the Lax spectrum (the set of admiss-
ible values of the spectral parameter λ) is a subset of the real line.

If solutions of the nonlocal model (2.1) inH1 are restricted in the space of analytic functions
in C+, then u ∈ H1 ∩L2

+, where L2
+ is defined by L2

+ := {u ∈ L2 : P+u= u}. Then uq+ and
uq+x − uxq+ are analytic functions in C+ so that the linear system (2.5) can be closed for
p being also analytic in C+. This brings the spectrum of a restricted self-adjoint operator
Lu|L2

+
: H1 ∩L2

+ ⊂ L2 → L2
+ ⊂ L2 given by

Lu|L2
+
=−i∂x+σP+uP+ (ū ·) (2.9)

and considered in [4, 28] for periodic and soliton solutions. In consistency with this restriction,
we will show in our work that the profile u of the traveling periodic waves satisfies u ∈ H1 ∩L2

+

and that the component p of the eigenfunction satisfies p ∈ H1 ∩L2
+, from which the spectra

of Lu and Lu|L2
+
are equivalent, see propositions 1–4.

As in the case of the BO equation [14], there are two exact solutions of the linear sys-
tem (2.5) if u is the spatial profile of the traveling periodic wave. The first solution has q− ≡ 0
and the second solution has both q+ and q− nonzero.

For the first solution, the admissible values of λ in the Lax spectrum are defined by the exist-
ence of bounded components (p,q+,q− = 0) of the eigenfunction such that q+ is analytic and
bounded inC+. For the second solution, it is not sufficient to look for the bounded components
(p,q+,q−) of the eigenfunction for which q± are analytic and bounded in C± [14]. Based on
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propositions 2.2 and C.2 of [25] for the BO equation, we need to define the additional spec-
tral bands in ∪N

j=0[λj,λj+ k1], where {λ0,λ1, . . . ,λN} are admissible values of λ for which the
mean value of nonzero q− over the spatial period of u is zero. The values of {λ0,λ1, . . . ,λN}
correspond to the spectrum of the Lax operator Lu : H1

per ⊂ L2
per → L2

per closed in the space of
periodic functions with the spatial period of u such that the projection formula (2.7) yields˛

q+dx=−σ
˛
ūpdx, µ

˛
q−dx= 0,

where
¸

denotes the integral of a L-periodic function over the period [0,L] independently of
the starting point of integration.

The requirements on the admissible values of λ are summarized as follows.

Definition 1. The Lax spectrum of the linear system (2.5) is the set of admissible values of λ
for which the components (p,q+,q−) of the eigenfunction are bounded functions of xwith q±

being analytic and bounded in C± respectively. In addition, if q− 6= 0, then the Lax spectrum
includes ∪N

j=0[λj,λj+ k1], where {λ0,λ1, . . . ,λN} are the admissible values of λ for which the
mean value of q− over the spatial period of u is zero.

3. Stability of the nonzero constant background

The simplest solution of the nonlocal model (2.1) is the nonzero constant solution u(x, t) =
u0 ∈ C\{0}. The constant value u0 ∈ C can be normalized to unity without loss of generality
due to the scaling symmetry (2.4) and the rotational symmetry (2.2).

The following result gives the linear stability of the nonzero constant background with
respect to decaying perturbations.

Theorem 1. Let u= 1+ v and consider the linearized equations of motion

ivt = vxx+σ (i +H)(vx+ v̄x) . (3.1)

If σ =+1, then for every initial data v0 ∈ Hs(R), s⩾ 0, the unique solution v ∈ C0(R,Hs(R))
to the linearized equation (3.1) with v|t=0 = v0 satisfies

‖v(·, t)‖Hs ⩽ C‖v0‖Hs for every t ∈ R, (3.2)

for some constant C> 0. If σ =−1, then for every v0 ∈ Hs(R)∩L2,p(R), s⩾ 0, p> 3
2 with

v̂0 ∈ C1(R) satisfying v̂0(±1) = 0, the unique solution v ∈ C0(R,Hs(R)) to the linearized
equation (3.1) with v|t=0 = v0 satisfies

‖v(·, t)‖Hs ⩽ C‖v0‖Hs∩L2,p for every t ∈ R. (3.3)

Here v̂0 is the Fourier transform of v0 and L2,p(R) = {f ∈ L2(R) : |x|pf ∈ L2(R)}.

Proof. Separating the real and imaginary parts in the linear equation (3.1) as v= A+ iB yields
the coupled system{

At = Bxx+ 2σAx,
−Bt = Axx+ 2σHAx.

Let Â, B̂ denote the Fourier transform of A,B with Fourier parameter k ∈ R. The Fourier trans-
form brings the system to the form{

Ât =−k2B̂+ 2σi kÂ,
B̂t = k2Â+ 2σ|k|Â, (3.4)

6
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from which we obtain the following characteristic equation,

λ2 − 2iσkλ+ k2
(
k2 + 2σ|k|

)
= 0.

Due to the factorization

(λ− iσk)2 + k2 (|k|+σ)
2
= 0,

the characteristic equation admits two solutions

λ1 (k) =−i k|k|,
λ2 (k) = i k(2σ+ |k|) .

Since λ1(k),λ2(k) ∈ iR, solution Â and B̂ of system (3.4) are bounded functions of t if λ1(k) 6=
λ2(k). For k= 0, we have λ1(0) = λ2(0) = 0 but the system (3.4) gives constant Â and B̂ in t.

If σ =+1, then there exist no solutions of λ1(k) = λ2(k)with k 6= 0. Hence, for every k ∈ R,
there exists C> 0 such that

|Â(k, t) |+ |B̂(k, t) |⩽ C
(
|Â(k,0) |+ |B̂(k,0) |

)
, t ∈ R, (3.5)

so that the bound (3.2) holds.
If σ =−1, then there exist solutions k=±1 of λ1(k) = λ2(k) =∓i. For every k 6=±1, we

obtain the unique bounded solution of the system (3.4),

Â(k, t) = kĈ1 (k)e
−ik|k|t+ Ĉ2 (k)e

ik(|k|−2)t,

B̂(k, t) = i(|k| − 2) Ĉ1 (k)e
−ik|k|t− isgn(k) Ĉ2 (k)e

ik(|k|−2)t,

for some t-independent Ĉ1(k) and Ĉ2(k) that only depend on Â(k,0) and B̂(k,0) according to
the exact expressions:

Ĉ1 (k) =
isgn(k) Â(k,0)+ B̂(k,0)

2i(|k| − 1)
,

Ĉ2 (k) =
i (|k| − 2) Â(k,0)− kB̂(k,0)

2i(|k| − 1)
.

If v0 ∈ Hs(R)∩L2,p(R), s⩾ 0, p> 3
2 , then Â(k,0), B̂(k,0) are C

1(R) functions by the Fourier
theory. If they satisfy the constraints Â(±1,0) = B̂(±1,0) = 0, then the estimate (3.5) is
replaced by

|Â(k, t) |+ |B̂(k, t) |⩽ C

{
|Â ′ (k,0) |+ |B̂ ′ (k,0) |, |k|⩽ 2,
|Â(k,0) |+ |B̂(k,0) |, |k|> 2,

t ∈ R,

so that the bound (3.3) holds.

Remark 1. In the defocusing case σ =+1, the linear stability of theorem 1 can be extended
to the space of periodic functions Hs

per(0,L), s⩾ 0 for every period L> 0.

Remark 2. In the focusing case σ =−1, the resonance of λ1(k) = λ2(k) for k=±1 sug-
gests the linear instability of the constant solution u= 1 in the space of 2π-periodic functions.
Indeed, the system (3.4) for k=±1 and σ =−1 admits two solutions, one of which is linearly
growing in t:
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Â(±1, t) = (ĉ1 + ĉ2t) e∓it,

B̂(±1, t) = (∓i ĉ1 +(∓i t− 1) ĉ2) e∓it,

for some t-independent ĉ1 and ĉ2 obtained from Â(±1,0) and B̂(±1,0). This linear instability
is missed in L2

per(0,L) if the spatial period L is not divisible by 2π.

In order to obtain the nonlinear stability of the nonzero constant background, we use the
conserved quantities, see equations (6.8) in [46] and (A.16)–(A.18) in [43]. The nonlocal
model (2.1) onRwith the boundary conditions |u(x, t)| → 1 as |x| →∞ for every t ∈ R admits
the following conserved quantities:

I1 (u) =
ˆ
R

(
|u|2 − 1

)
dx,

I2 (u) = i
ˆ
R
(uūx− ūux)dx+σ

ˆ
R

(
|u|4 − 1

)
dx,

I3 (u) =
ˆ
R

(
|ux|2 −

i
2
σ|u|2 (ūux− ūxu)−

1
2
σ|u|2H

(
|u|2
)
x
+

1
3

(
|u|6 − 1

))
dx.

The conserved quantities can be defined for the L-periodic functions on the L-periodic domain
by replacing

´
R with

¸
. In what follows, we only consider the L-periodic functions. A suitable

combination of the conserved quantities leads to the following nonlinear stability result in the
defocusing case σ =+1.

Theorem 2. For every fixed L> 0, there exists δ > 0 such that for every v0 ∈ H1
per((0,L),C)

with ‖v0‖H1
per
⩽ δ, the unique solution u ∈ C0(R,H1

per((0,L),C)) to the nonlocal model (2.1)
with σ =+1 and with u|t=0 = 1+ v0 satisfies

‖e−iθ(t)u(·, t)− 1‖H1
per
⩽ C‖v0‖H1

per
for every t ∈ R, (3.6)

for some constant C> 0 and some function θ ∈ C0(R).

Proof. By substituting u= 1+ v in the conserved quantities, expanding them in v, and integ-
rating by parts, we obtain

I1 (1+ v) =
˛ (

v+ v̄+ |v|2
)
dx,

I2 (1+ v)− 2σI1 (1+ v) = i
˛

(vv̄x− v̄vx)dx+σ

˛ (
v+ v̄+ |v|2

)2
dx,

I3 (1+ v)−σI2 (1+ v)+ I1 (1+ v) =
˛ (

|vx|2 +
1
2
σ (v+ v̄)K(v+ v̄)+N(v)

)
dx,

where K=−H∂x = |∂x| and N(v) contains nonlinear terms from cubic to sixth-order powers
of v:

N(v) = iσ|v|2 (v̄x− vx)+
i
2
σ
(
v2v̄x− v̄2vx

)
+
i
2
σ|v|2 (vv̄x− v̄vx)

−σ (v+ v̄)H
(
|v|2
)
x
− 1

2
σ|v|2H

(
|v|2
)
x
+

1
3

(
v+ v̄+ |v|2

)3
.

Local well-posedness of the nonlocal model (2.1) in H1(R,C) has been proven in [19], this
result is also extended in H1

per((0,L),C) [3]. The Lyapunov functional is defined by

Λ(v) := I3 (1+ v)−σI2 (1+ v)+ I1 (1+ v) , v ∈ H1
per ((0,L) ,C) . (3.7)

8
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In the defocusing case σ =+1, the quadratic part of Λ is positive and coercive in v ∈
H1

per((0,L),C) for the spatially varying part of the perturbation v. Indeed, if we use Fourier
series

v(x) =
∑
n∈Z

v̂ne
2π i nx
L , v̄(x) =

∑
n∈Z

¯̂v−ne
2π i nx
L ,

then we obtain by Parseval’s equality

˛ [
|vx|2 +

1
2
(v+ v̄)K(v+ v̄)

]
dx=

∑
n∈Z

4π2n2

L
|v̂n|2 +π |n||v̂n+¯̂v−n|2,

where we have used the Fourier symbol of K from K(eikx) = |k|eikx, k ∈ R. Neglecting the
second term in the lower bound and using Poincaré inequality for the first term, we get the
coercivity bound

˛ [
|vx|2 +

1
2
(v+ v̄)K(v+ v̄)

]
dx⩾ 1

2
‖vx‖2L2 +

2π2

L2
‖v− v̂0‖2L2 , (3.8)

which allows us to control the H1
per((0,L),C) norm of the spatially varying part of the local

solution v ∈ C0((−τ0, τ0),H1
per((0,L),C)) for some τ0 > 0 from the conserved value of the

Lyapunov functional Λ.
It remains to control the mean value of the perturbation v. We can preserve the zero-mean

constraint for the imaginary part of v by using the rotational invariance (2.2) and introducing
the orthogonal decomposition

u(x, t) = eiθ(t) [1+ v(x, t)] ,
˛

Im(v)dx= 0,

where the modulational parameter θ ∈ C0((−τ0, τ0),R) is uniquely defined for the local solu-
tion v ∈ C0((−τ0, τ0),H1

per((0,L),C)) from zeros of f(θ) : R→ R given by

f(θ) :=
˛

Im
(
e−iθu− 1

)
dx.

By the implicit function theorem, there exists a unique θ ∈ R for every u ∈ H1
per in the ball with

small infθ∈R ‖e−iθu− 1‖H1
per
⩽ C‖v0‖H1

per
.

To control the mean value of the real part of the perturbation v, we use the first conserved
quantity I1 and Parseval’s equality to obtain

I1 (1+ v) = 2Lv̂0 +Lv̂20 +L
∑

n∈Z\{0}

|v̂n|2,

where v̂0 ∈ R due to the zero-mean constraint
¸
Im(v)dx= 0. This yields

L(v̂0 + 1)2 = I1 (1+ v)+ L−L
∑

n∈Z\{0}

|v̂n|2 ⩽ I1 (1+ v)+ L,

or

|v̂0|⩽
√
L+ I1 (1+ v)√

L
− 1.

9
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Since I1(1+ v) is conserved in time, Cauchy–Schwarz inequality implies that

|I1 (1+ v) |⩽ 2
√
L‖v0‖L2 + ‖v0‖2L2 .

Due to the smallness of ‖v0‖L2 , there is a constant C> 0 independently of the initial data
v0 ∈ H1

per((0,L),C) (which may change from one line to another line) such that

|v̂0 (t) |⩽
√
L+ I1 (1+ v)√

L
− 1⩽ C‖v0‖L2 , (3.9)

which controls v̂0(t) for every t ∈ (−τ0, τ0). Due to the Banach algebra of H1
per, the nonlinear

terms of Λ(v) are controlled by∣∣∣∣˛ N(v)dx

∣∣∣∣⩽ C
(
‖v‖3H1

per
+ ‖v‖6H1

per

)
. (3.10)

Since the value of Λ(v) is conserved in time t ∈ R and ‖v0‖H1
per

is small, we obtain the bound

Λ(v)⩽ C‖v0‖2H1
per
.

By using the coercivity of the quadratic part of Λ(v) for the varying part of v, the zero-mean
constraint for Im(v), and the control of the mean value of Re(v), we obtain with triangle
inequality and bounds (3.8)–(3.10) that

‖v(·, t)‖H1
per
⩽ ‖v̂0 (t)‖L2 + ‖v(·, t)− v̂0 (t)‖H1

per

⩽
√
L|v̂0 (t) |+C

√
Λ(v)

⩽ C‖v0‖H1
per

for every t ∈ (−τ0, τ0). Since this bound is independent of t, the local solution v ∈
C0((−τ0, τ0),H1

per((0,L),C)) can be extended globally to yield the bound (3.6).

Corollary 1. Theorem 2 holds in the focusing case σ =−1 for every L ∈ (0,π).

Proof. In the focusing case σ =−1, the quadratic part of Λ(v) is given by

˛ [
|vx|2 −

1
2
(v+ v̄)K(v+ v̄)

]
dx=

∑
n∈Z

4π2n2

L

(
|R̂e(v)n|

2 + |Îm(v)n|
2
)
− 4π |n||R̂e(v)|2.

It is clear that it is sign-definite for L< π, hence the same Lyapunov functional (3.7) can be
used for the proof of nonlinear stability of the constant solution u= 1 if L< π. The rest of the
proof holds verbatim.

Remark 3. For L ∈ [π,∞), it is an open problem to prove the nonlinear stability of the constant
solution u= 1 with respect to perturbations in H1

per((0,L),C) in the focusing case σ =−1.
This interval includes the periods L multiple to 2π, for which the linear instability holds by
remark 2.

10
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4. Traveling periodic waves and breathers on the nonzero background

We introduce the bilinear formulation of the nonlocal model (2.1) and the linear system (2.5).
We use the bilinear formulation to obtain the traveling periodic wave in section 4.1. Lax spec-
trum of the traveling periodic wave is computed in section 4.2. By using the Lax spectrum
and the double-periodic solutions, we construct the exact solution for the solitary wave on
the background of the traveling periodic wave in section 4.3. Section 4.4 gives a closed-form
solution for N solitary waves on the background of the traveling periodic wave as a quotient
of determinants.

Without loss of generality, we normalize the nonzero background for the traveling periodic
wave to unity due to the scaling symmetry (2.4).We also refer to solitary waves on the traveling
periodic wave as to the breathers, similar to the terminology used in [14, 31, 44], due to the
periodic character of the interaction between the solitary wave and the traveling periodic wave.

4.1. Traveling periodic wave

Assume that f and f̃ have only zeros in the lower and upper half of the complex plane of x,
respectively. Then, fx/f and f̃x/f̃ are analytic in the upper and lower half-planes, respectively.
By using the projection formulas (2.6), we obtain

P+ ∂2

∂x2
ln
f

f̃
=

∂2

∂x2
ln f, P− ∂2

∂x2
ln
f

f̃
=− ∂2

∂x2
ln f̃. (4.1)

Substitution

u=
g
f
, ū=

g̃

f̃
, |u|2 = 1− iσ

∂

∂x
ln
f

f̃
(4.2)

transforms the nonlocal model (2.1) into the following system of bilinear equations (also used
in [39, 43, 45]):

(
iDt+D2

x

)
f · g= 0,(

−iDt+D2
x

)
f̃ · g̃= 0,

iDx f · f̃+σ
(
g · g̃− f · f̃

)
= 0.

(4.3)

The following proposition summarizes the state-of-art in the existence of the traveling peri-
odic waves on the nonzero background. Although we give a proof for the sake of completeness,
similar solution waveforms have been obtained in [4, 39, 43].

Proposition 1. The nonlocal model (2.1) admits the traveling periodic wave in the form

u(x, t) = e
1
2 (ψ1−ϕ1)

1+ ei k1ξ1−ψ1

1+ ei k1ξ1−ϕ1
, ū(x, t) = e−

1
2 (ψ1−ϕ1)

1+ ei k1ξ1+ψ1

1+ ei k1ξ1+ϕ1
(4.4)

and

|u(x, t) |2 = 1− σk1 sinhϕ1

cosk1ξ1 + coshϕ1
, (4.5)

where k1 > 0 and ξ1 = x− c1t− x1 with arbitrary x1 ∈ R, whereas ϕ1 > 0 and ψ1 ∈ R are
uniquely determined by

e2ϕ1 =
(c1 − k1)(c1 + k1 + 2σ)
(c1 + k1)(c1 − k1 + 2σ)

, eψ1 =
c1 + k1
c1 − k1

eϕ1 . (4.6)

The parameters k1 > 0 and c1 ∈ R are further restricted as follows:

11
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• If σ= 1, then k1 ∈ (0,1) and c1 ∈ (−2+ k1,−k1).
• If σ =−1, then k1 ∈ (0,∞) and either c1 ∈ (k1 + 2,∞) or c1 ∈ (−∞,−k1).

Proof. Let us consider the following solution of the bilinear equation (4.3):{
f = 1+ eik1ξ1−ϕ1 , f̃= 1+ eik1ξ1+ϕ1 ,

g= γ1
(
1+ eik1ξ1−ψ1

)
, g̃= γ−1

1

(
1+ eik1ξ1+ψ1

)
,

(4.7)

where ξ1 = x− c1t− x1. The real parameters k1, c1, x1 are arbitrary as long as the sign of ϕ1

coincides with the sign of k1, since f and f̃ given by (4.7) must only have zeros in the lower and
upper half-planes, respectively. The real parameter γ1 is arbitrary as long as ū is a complex
conjugate of u.

The bilinear equation (4.3) are satisfied if and only if coefficients ϕ1 and ψ1 are uniquely
determined by (4.6). Substituting (4.7) into (4.2), we obtain the traveling wave solution in the
form (4.4) and (4.5) with ū= g̃

f̃
being the complex conjugate of u= g

f if and only if γ1 is a
real root of the quadratic equation:

γ2
1 = eψ1−ϕ1 =

c1 + k1
c1 − k1

.

It remains to obtain the admissible values for parameters k1 and c1 from the condition that
the sign of ϕ1 must coincide with the sign of k1 and that γ2

1 > 0. Due to the symmetry of k1 in
the expression for e2ϕ1 given by (4.6), we can consider k1 > 0 without loss of generality, with
ϕ1 > 0. The admissible values for k1 and c1 are defined from the inequalities:

c+ k1
c− k1

> 0 and
(c1 − k1)(c1 + k1 + 2σ)
(c1 + k1)(c1 − k1 + 2σ)

> 1. (4.8)

There are four cases to be considered for both σ= 1 and σ =−1.

If σ =+1, we obtain:

• If c1 − k1 > 0, the second inequality in (4.8) yields k1 < 0, a contradiction.
• If c1 − k1 < 0 and c1 + k1 > 0, then the first inequality in (4.8) is contradictory.
• If c1 − k1 < 0 and c1 + k1 < 0 but c1 − k1 + 2> 0 and c1 + k1 + 2> 0, then k1 ∈ (0,1) and
c1 ∈ (−2+ k1,−k1). The second inequality in (4.8) yields k1 > 0, which is true.

• If c1 − k1 < 0 and c1 + k1 < 0 but c1 − k1 + 2< 0 and c1 + k1 + 2< 0, the second inequality
in (4.8) yields k1 < 0, a contradiction.

If σ =−1, we obtain:

• If c1 > k1 + 2, both inequalities in (4.8) are satisfied for k1 > 0.
• If c1 > k1 but c1 < 2− k1, then k1 ∈ (0,1) but the second inequality in (4.8) yields k1 < 0,

a contradiction.
• If c1 < k1 but c1 >−k1, the first inequality in (4.8) is contradictory.
• If c1 <−k1, both inequalities in (4.8) are satisfied for k1 > 0.

To summarize, only one solution exists for σ =+1 with k1 ∈ (0,1) and c1 ∈ (−2+ k1,−k1)
and two solutions exist for σ =−1 with either c1 ∈ (k1 + 2,∞) or with c1 ∈ (−∞,−k1) for
every k1 > 0.

12
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Figure 1. The profile of |u|2 versus x for σ =+1, k1 = 0.25, and either c1 =−1 (left)
or c1 =−0.5 (right).

Remark 4. It follows from (4.4) that u and ū are analytic in C+ and C− respectively. This
was not a requirement on solutions of the nonlocal model (2.1). Nevertheless, the traveling
periodic waves satisfy this property.

Remark 5. The traveling periodic waves can be extended by using the translational and rota-
tional symmetries (2.2) and the Lorentz transformation (2.3), whereas the scaling transforma-
tion (2.4) has been used to normalize the nonzero background to unity.

To study properties of the traveling periodic waves of proposition 1, we note that the exist-
ence intervals for the wave speed c1 are symmetric relative to−σ. In other words, replacing c1
by −2σ− c1 yields the same expression for e2ϕ1 in (4.6) and hence for |u(x, t)|2 in (4.5). The
existence intervals can be formulated symmetrically as

σ =+1 : c1 + 1 ∈ (−1+ k1,1− k1) , k1 ∈ (0,1) (4.9)

and

σ =−1 : c1 − 1 ∈ (−∞,−1− k1)∪ (1+ k1,∞) , k1 ∈ (0,∞) . (4.10)

Without loss of generality, we can consider travelng periodic waves for c1 +σ ⩾ 0.
Figure 1 gives the spatial profile of |u|2 given by (4.5) for σ =+1, k1 = 0.25, and two

choices of c1 in (4.9). The wave profiles are of the depression type and the profile with c1 =
−1 reaches the zero value (left panel). Figure 2 shows the spatial profile of |u|2 for σ =−1,
k1 = 0.25, and two choices of c1 in (4.10). The wave profiles are of the elevation type with
larger amplitudes for larger speeds.

The long-wave limit of the periodic wave appears as k1 → 0 where the periodic wave
reduces to a solitary wave. As k1 → 0, it follows from (4.6) that ϕ1 → 0 and ψ1 → 0 according
to the power expansions

ϕ1 =− 2σk1
c1 (c1 + 2σ)

+O
(
k21
)
, ψ1 =

2(c1 +σ)k1
c1 (c1 + 2σ)

+O
(
k21
)
,

For each family of proposition 1, we have ϕ1 > 0 if k1 > 0. We obtain from (4.4) and (4.5)
after the transformation x1 7→ x1 +π/k1 in the limit k1 → 0 that

u(x, t) = 1− 2σ (c1 + 2σ)
2+ iσc1 (c1 + 2σ)ξ1

(4.11)
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Figure 2. The profile of |u|2 versus x for σ =−1, k1 = 0.25, and either c1 = 2+ 2k1
(left) or c1 = 2+ 4k1 (right).

and

|u(x, t) |2 = 1+
4c1 (c1 + 2σ)

c21 (c1 + 2σ)2 ξ21 + 4
. (4.12)

If σ =+1, the existence interval for c1 ∈ (−2+ k1,−k1) becomes c1 ∈ (−2,0) in the limit
k1 → 0. Since c1 < 0 and c1 + 2> 0, the algebraic soliton is the dark soliton on the nonzero
constant background with the smallest intensity attained at ξ1 = 0:

min
(x,t)∈R2

|u(x, t) |2 = (1+ c1)
2
< 1.

If σ =−1, the existence intervals for c1 ∈ (k1 + 2,∞) and c1 ∈ (−∞,−k1) become c1 ∈
(2,∞) and c1 ∈ (−∞,0) in the limit k1 → 0. Since either c1 < 0 or c1 > 2, the algebraic soliton
is the bright soliton on the nonzero constant background with the largest intensity attained at
ξ1 = 0:

max
(x,t)∈R2

|u(x, t) |2 = (1− c1)
2
> 1.

4.2. Lax spectrum of the traveling periodic wave

To obtain the exact solutions of the linear system (2.5), we use the representation (4.2) and
introduce

p=
φ

f
, q+ =

h
f
, q− =

h̃

f̃
, (4.13)

where f and f̃ are given by (4.7) andφ, h, and h̃ are to be found. By using (4.1), (4.2), and (4.13),
the linear system (2.5) is reduced to the following system of bilinear equations (also used in
[39, 43]): 

(iDx+λ)φ · f + g · h= 0,
h · f̃−µh̃ · f +σφ · g̃= 0,(
iDt+λ2

)
φ · f +(iDx+λ)h · g= 0,(

iDt− 2iλDx+D2
x

)
h · f = 0,(

iDt− 2iλDx+D2
x

)
h̃ · f̃= 0.

(4.14)

14
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The following proposition identifies the Lax spectrum for the traveling periodic wave with
the spatial profile (4.4) and (4.5) based on the exact solutions of the system (4.14).

Proposition 2. Let u be the traveling periodic wave in proposition 1. The Lax spectrum in
definition 1 is located in

Σ= [λ0,λ0 + k1]∪ [σ,∞), λ0 :=−c1 + k1
2

, λ0 + k1 =−c1 − k1
2

. (4.15)

• If σ =+1, then k1 ∈ (0,1) and c1 ∈ (−2+ k1,−k1) so that [λ0,λ0 + k1]⊂ (0,1) is isolated
from [1,∞).

• If σ =−1, then k1 ∈ (0,∞) and either c1 ∈ (k1 + 2,∞) for which [λ0,λ0 + k1] is isolated
from [−1,∞) or c1 ∈ (−∞,−k1) for which [λ0,λ0 + k1] is embedded into [−1,∞).

Proof. We proceed differently for q− ≡ 0 and q− 6= 0.
If q− ≡ 0, then h̃≡ 0. The second equation of system (4.14) implies that

h=−σφ g̃
f̃
.

Since q+ =−σūp is analytic in C+, then h is required to be analytic in C+. Since f̃ admits
zeros in C+, then φ must be divisible by f̃ so that

φ = mf̃, h=−σmg̃, (4.16)

with some m= m(x, t) to be determined (required to be analytic in C+).
From the first equation of system (4.14) we find with the help of the third equaton of

system (4.3) that

imx+(λ−σ)m= 0. (4.17)

From the third equation of system (4.14), we obtain with the help of the third equaton of
system (4.3) and (4.17) that[

imt+
(
λ2 − 1

)
m
]
f̃ · f + im

[
(Dt−σDx) f̃ · f −σDxg̃ · g

]
= 0.

From the fourth equation of system (4.14), we obtain with the help of (4.17) that[
imt+

(
λ2 − 1

)
m
]
g̃ · f +m

(
iDt− 2iσDx+D2

x

)
g̃ · f = 0.

By using the exact solution (4.6) and (4.7), we verify that

(Dt−σDx) f̃ · f −σDxg̃ · g= 0,(
iDt− 2iσDx+D2

x

)
g̃ · f = 0,

which imply that

imt+
(
λ2 − 1

)
m= 0. (4.18)

Solving (4.17) and (4.18) yields

m(x, t) = ei(λ−σ)x+i(λ
2−1)t

with the constant of integration normalized to unity. By using (4.13) and (4.16), we obtain the
exact expression for the components p and q+ of the eigenfunctions with q− ≡ 0:

p= ei(λ−σ)x+i(λ
2−1)t 1+ eik1ξ1+ϕ1

1+ eik1ξ1−ϕ1
, q+ =−σγ−1

1 ei(λ−σ)x+i(λ
2−1)t 1+ eik1ξ1+ψ1

1+ eik1ξ1−ϕ1
. (4.19)
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The component q+ is analytic in C+ and bounded as Im(x)→+∞ for every t ∈ R if and only
if λ⩾ σ. Hence, [σ,∞) ∈ Σ belongs to the Lax spectrum (4.15).

If q− 6= 0, then we obtain solutions for h and h̃ by using the last two equations of sys-
tem (4.14). Given f in (4.7) we separate the variables in the form

h= ei(θξ1+Ωt)
(
1+Aeik1ξ1−ϕ1

)
,

with some θ, Ω, and A to be determined. The fourth equation in system (4.14) is satisfied if
and only if

Ω= θ (c1 + 2λ− θ) and A=
c1 + 2λ− 2θ+ k1
c1 + 2λ− 2θ− k1

,

which yields the explicit solution

h= eiθ(ξ1+(c1+2λ−θ)t)
(
1+

c1 + 2λ− 2θ+ k1
c1 + 2λ− 2θ− k1

eik1ξ1−ϕ1

)
. (4.20)

With similar computations from the fifth equation in system (4.14), we obtain the explicit
solution

h̃= eiθ(ξ1+(c1+2λ−θ)t)
(
1+

c1 + 2λ− 2θ+ k1
c1 + 2λ− 2θ− k1

eik1ξ1+ϕ1

)
,

where parameter θ ∈ R has to be the same due to the coupling between h and h̃ in the second
equation of system (4.14). Now q+ and q− are analytic and bounded inC+ andC− respectively
if and only if θ= 0. This yields the unique representation of the components q+ and q− in the
form

q+ =
1

1+ eik1ξ1−ϕ1

[
1+

c1 + 2λ+ k1
c1 + 2λ− k1

eik1ξ1−ϕ1

]
(4.21)

and

q− =
1

1+ eik1ξ1+ϕ1

[
1+

c1 + 2λ+ k1
c1 + 2λ− k1

eik1ξ1+ϕ1

]
. (4.22)

It remains to find p from the first three equations of system (4.14). Given f and g in (4.7) and
h in (4.20) with θ= 0, we separate the variables in the form:

φ = B
(
1+Ceik1ξ1−ψ1

)
, (4.23)

with some parameters B andC to be determined. The first equation of system (4.14) is satisfied
if and only if

B=−γ1λ−1 and C=
c1 + 2λ+ k1
c1 + 2λ− k1

.

The value of µ is obtained from the second equation in system (4.14) which yields

φ = σg̃−1
(
µh̃f − hf̃

)
with

µh̃f − hf̃= (µ− 1)

(
1+

c1 + 2λ+ k1
c1 + 2λ− k1

e2i k1ξ1
)

+ eik1ξ1
[
eϕ1

(
µ
c1 + 2λ+ k1
c1 + 2λ− k1

− 1

)
+ e−ϕ1

(
µ− c1 + 2λ+ k1

c1 + 2λ− k1

)]
.
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Due to the exact solution (4.23), µh̃f − hf̃ must be divisible by g̃ which is true if and only if

µ= 1−σλ−1.

With this restriction on parameter µ ∈ R of the linear system (4.14), we obtain the explicit
expression for the component p of the eigenfunction:

p=− γ1λ
−1

1+ eik1ξ1−ϕ1

[
1+

c1 + 2λ+ k1
c1 + 2λ− k1

eik1ξ1−ψ1

]
. (4.24)

The third equation in system (4.14) can be rewritten with the help of the first equation in (4.14)
in the form

i (Dt−λDx)φ · f + iDxh · g= 0.

Using (4.6), (4.7), (4.20) with θ= 0, and (4.23) we have verified that this equation is satisfied.
Thus, (4.21), (4.22), and (4.24) give the exact solution of (2.5) for q− 6= 0. The components
q± are analytic in C± and bounded as Im(x)→±∞ for every t ∈ R.

According to definition 1, we check the mean value of q− to obtain the additional bands
∪N
j=0[λj,λj+ k1] of the Lax spectrum. Since q− is analytic in C−, we use the geometric series

to represent q− in the form

q− =

[
c1 + 2λ+ k1
c1 + 2λ− k1

+ e−ik1ξ1−ϕ1

] ∞∑
ℓ=0

(−1)ℓ e−iℓk1ξ1−ℓϕ1 ,

from which it follows that the mean value of q− is zero at only one point given by

c1 + 2λ0 + k1 = 0.

This yields only one additional band [λ0,λ0 + k1] in the Lax spectrum given by (4.15).
Finally, we compare the location of [λ0,λ0 + k1] relative to [σ,∞).

• If σ =+1, then c1 ∈ (−2+ k1,−k1) so that λ0 > 0 and λ0 + k1 < 1 and [λ0,λ0 + k1] ∈ (0,1)
is isolated from [1,∞).

• If σ =−1, then either c1 ∈ (k1 + 2,∞) so that λ0 + k1 <−1 and [λ0,λ0 + k1] is isol-
ated from [−1,∞) or c1 ∈ (−∞,−k1) so that λ0 >−1 and [λ0,λ0 + k1] is embedded into
[−1,∞).

This completes the proof of proposition.

Remark 6. It follows from (4.19) and (4.24) that p is analytic and bounded in C+. This was
not a requirement on solutions of the linear system (2.5). Nevertheless, since the spatial profile
u in the traveling periodic wave is analytic in C+, see remark 4, the Lax spectrum of the linear
operators Lu and Lu|L2

+
, see (2.8) and (2.9), are identical to each other and p is also analytic

in C+.

Remark 7. The Lax spectrum of the algebraic soliton (4.11) and (4.12) appears in the limit
k1 → 0 of proposition 2. It consists of the spectral band [σ,∞) and a simple eigenvalue at
λ0 =− c1

2 .

• If σ =+1, then c1 ∈ (−2,0) and λ0 ∈ (0,1) is isolated from the continuous spectrum [1,∞).
• If σ =−1, then either c1 ∈ (2,∞) and λ0 ∈ (−∞,−1) is isolated from the continuous spec-

trum [−1,∞) or c1 ∈ (−∞,0) and λ0 ∈ (0,∞) is embedded into the continuous spectrum
[−1,∞).
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4.3. Breathers on the traveling periodic wave

To obtain a solitary wave on the background of the traveling periodic wave (4.4) and (4.5), we
start with the double-periodic wave solution of the nonlocal model (2.1) obtained in [39, 43].
By using the representation (4.2), we write the double-periodic wave solution in the form:

f = 1+ eik1ξ1−ϕ1− 1
2A12 + eik2ξ2−ϕ2− 1

2A12 + eik1ξ1−ϕ1+i k2ξ2−ϕ2 ,

f̃ = 1+ eik1ξ1+ϕ1− 1
2A12 + eik2ξ2+ϕ2− 1

2A12 + eik1ξ1+ϕ1+i k2ξ2+ϕ2 ,

g = γ12

[
1+ eik1ξ1−ψ1− 1

2A12 + eik2ξ2−ψ2− 1
2A12 + eik1ξ1−ψ1+i k2ξ2−ψ2

]
,

g̃ = γ−1
12

[
1+ eik1ξ1+ψ1− 1

2A12 + eik2ξ2+ψ2− 1
2A12 + eik1ξ1+ψ1+i k2ξ2+ψ2

]
,

(4.25)

where ξj = x− cjt− xj with arbitrary xj ∈ R, sgn(ϕj) = sgn(kj),

e2ϕj =
(cj− kj)(cj+ kj+ 2σ)
(cj+ kj)(cj− kj+ 2σ)

, eψj =
cj+ kj
cj− kj

eϕj , j = 1,2, (4.26)

e−A12 =
(c1 − c2)

2 − (k1 + k2)
2

(c1 − c2)
2 − (k1 − k2)

2 , (4.27)

and

γ12 = e
1
2 (ψ1−ϕ1)+

1
2 (ψ2−ϕ2). (4.28)

The parameters k1,2 and c1,2 must satisfy the same restrictions as in proposition 1:

• If σ =+1, then kj ∈ (0,1) and cj ∈ (−2+ kj,−kj), j = 1,2.
• If σ =−1, then kj ∈ (0,∞) and either cj ∈ (kj+ 2,∞) or cj ∈ (−∞,−kj), j = 1,2.

In addition, the parameters must satisfy the restriction

(c1 − c2)
2
> (|k1|+ |k2|)2 , (4.29)

which was proven in [18, lemma 1.1] for the BO equation. If the constraint (4.29) is satisfied
and sgn(kj) = sgn(ϕj) for j = 1,2, then the zeros of f and f̃ are located in the lower and upper
half-planes, respectively. This result of [18] holds for the nonlocal model (2.1) because the
functional representations of f and f̃ in (4.25) is identical to that for the BO equation.

The following theorem gives the new breather solutions on the background of the traveling
periodic wave.

Theorem 3. The nonlocal model (2.1) admits breather solutions on the traveling periodic
wave (4.4) and (4.5). The solutions exist in the form (4.2) with

f = (1− iα2ξ2)
(
1+ ei k1ξ1−ϕ1

)
+α2β12

(
1− ei k1ξ1−ϕ1

)
,

f̃ =−(1+ iα2ξ2)
(
1+ ei k1ξ1+ϕ1

)
+α2β12

(
1− ei k1ξ1+ϕ1

)
,

g =−γ1 (1+σc2 + iα2ξ2)
(
1+ ei k1ξ1−ψ1

)
+ γ1α2β12

(
1− ei k1ξ1−ψ1

)
,

g̃ = γ−1
1 (1+σc2 − iα2ξ2)

(
1+ ei k1ξ1+ψ1

)
+ γ−1

1 α2β12
(
1− ei k1ξ1+ψ1

)
,

(4.30)

where

γ1 :=

√
c1 + k1
c1 − k1

> 0, α2 :=−1
2
σc2 (c2 + 2σ)> 0, β12 :=

2k1
(c1 − c2)

2 − k21
> 0. (4.31)

Families of breather solutions are defined by the following intervals for admissible values
of c2:
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• If σ =+1, then c1 ∈ (−2+ k1,−k1) and either c2 ∈ (−2,c1 − k1) or c2 ∈ (c1 + k1,0).
• If σ =−1, then
− either c1 ∈ (k1 + 2,∞) with either c2 ∈ (c1 + k1,∞) or c2 ∈ (2,c1 − k1) or c2 ∈ (−∞,0)
− or c1 ∈ (−∞,−k1) with either c2 ∈ (2,∞) or c2 ∈ (c1 + k1,0) or c2 ∈ (−∞,c1 − k1).

Proof. We consider the double-periodic wave solution in the form (4.25) for k1 > 0 and k2 > 0
without loss of generality so that ϕ1 > 0 and ϕ2 > 0. By taking the long-wave limit k2 → 0
in (4.26) and (4.27), we obtain the asymptotic expansions:

ϕ2 =
k2
α2

+O
(
k22
)
, ψ2 =− (1+σc2)k2

α2
+O

(
k22
)
,

and

e−
1
2A12 = 1−β12k2 +O

(
k22
)

with the corresponding expressions for α2 > 0 and β12 > 0 in (4.31). The expressions for f,
f̃, g, and g̃ in (4.30) are obtained from (4.25) at the order of O(ϕ2) after the transformation
x2 7→ x2 +π/k2. The expression for γ1 > 0 in (4.31) follows from the limit k2 → 0 of γ12

in (4.28).
Let us now analyze the constraints on k1,2 and c1,2 as well as the additional constraint (4.29).

As k2 → 0, it follows from (4.29) that either c2 > c1 + k1 or c2 < c1 − k1.

• If σ =+1, thenwe have c1 ∈ (−2+ k1,−k1), and c2 ∈ (−2,0)with either c2 ∈ (−2,c1 − k1)
or c2 ∈ (c1 + k1,0).

• If σ =−1, then we have either c2 ∈ (2,∞) or c2 ∈ (−∞,0) with further intervals:
− If c1 ∈ (k1 + 2,∞), then either c2 ∈ (c1 + k1,∞)⊂ (2,∞) or c2 ∈ (2,c1 − k1)⊂ (2,∞)

or c2 ∈ (−∞,0).
− If c1 ∈ (−∞,−k1), then either c2 ∈ (2,∞) or c2 ∈ (c1 + k1,0)⊂ (−∞,0) or c2 ∈

(−∞,c1 − k1)⊂ (−∞,0).

Finally, we show that the zeros of f and f̃ given by (4.30) are located in the lower and upper
half-planes, respectively, if α2 > 0 and β12 > 0. Without the loss of generality, we consider
the zeros of f given by

(1− iα2ξ2)
(
1+ eik1ξ1−ϕ1

)
+α2β12

(
1− eik1ξ1−ϕ1

)
= 0,

or equivalently, by

eik1ξ1−ϕ1 =
α2β12 + 1− iα2ξ2
α2β12 − 1+ iα2ξ2

.

Denote the root of this equation by x= xR + i xJ ∈ C with xR = Re(x) and xJ = Im(x). Then,
xR and xJ are obtained from

eik1ξ̃1e−k1xJ−ϕ1 =
α2β12 + 1+α2xJ− iα2ξ̃2

α2β12 − 1−α2xJ+ iα2ξ̃2
,

where ξ̃j = xR − cjt− xj, j = 1,2 are real. Taking modulus in the equation yields

e−k1xJ−ϕ1 =

√√√√ (α2β12 + 1+α2xJ)
2
+α2

2ξ̃
2
2

(α2β12 − 1−α2xJ)
2
+α2

2ξ̃
2
2

.
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Figure 3. The Lax spectrum for the breather solutions of figures 4 (left) and 5 (right).

If xJ ⩾ 0, this equation yields a contradiction since the left-hand side is less than 1 and the
right-hand side is larger than 1, where we recall that α2 > 0, β12 > 0, and ϕ1 > 0. Hence,
xJ = Im(x)< 0 for every root of f.

Remark 8. The last part of the proof of theorem 3 is based on the proof in [14, section 2],
where it was overlooked that if ξ1 has a nonzero imaginary part for the complex root of f,
then ξ2 also has a nonzero imaginary part. However, the same contradiction as in the proof of
theorem 3 can be obtained for the BO equation in [14, section 2].

Remark 9. The value c2 in theorem 3 defines an isolated eigenvalue λ=− c2
2 added to the Lax

spectrum Σ of the traveling periodic wave in proposition 2. It is surprising that the relation
between the location of the isolated eigenvalue λ=− c2

2 and the soliton speed c2 is exactly
the same as in the case of no traveling periodic wave, see remark 7. The same property is also
observed for the BO equation in [14].

Next we give several examples of the breather solutions.
If σ =+1, the two intervals (c1 + k1,0) and (−2,c1 − k1) for the wave speed c2 in

theorem 3 are equivalent to

−c2
2

∈ (0,λ0) and − c2
2

∈ (λ0 + k1,1) . (4.32)

The Lax spectrum of the corresponding breather solutions include an additional isolated eigen-
value − c2

2 ∈ (0,1)\[λ0,λ0 + k1] outside the Lax spectrum Σ of the traveling periodic wave
given. The two cases in (4.32) are shown in figure 3 for the particular parameters of figures 4
and 5.

Figures 4 and 5 display the solution surfaces (side view on the left and top view on the
right) for the breather solution of theorem 3 for the two different choices in (4.9) and one
choice in (4.32). The solution surfaces are shown in the reference frame x+ t relative to the
wave speed being equal to −1. In both cases, we can see that the breather solution represents
the dark solitons over the traveling periodic wave.

Figure 4 is constructed for k1 = 0.25, c1 =−1, and c2 =−0.5 ∈ (c1 + k1,0). The travel-
ing periodic wave of proposition 1 is stationary in the reference frame x+ t, whereas the
dark soliton in the breather solution propagates to the right direction relative to the periodic
wave. Although the dark soliton impairs a phase shift, it is identically equal to the period
of the traveling periodic wave. This property is in agreement with the fact that the limit
ξ2 →±∞ of the breather solutions of theorem 3 yields the same traveling periodic wave of
proposition 1. If c2 =−1.5 ∈ (−2,c1 − k1), then the breather solution is very similar but the
dark soliton moves slowly than the periodic wave (not shown).
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Figure 4. The solution surface of |u|2 for the breather versus (x+ t, t) for k1 = 0.25,
c1 =−1, and c2 =−0.5.

Figure 5. The solution surface of |u|2 for the breather versus (x+ t, t) for k1 = 0.25,
c1 =−0.5, and c2 =−1.

Figure 5 is constructed for k1 = 0.25, c1 =−0.5, and c2 =−1 ∈ (−2,c1 − k1). The dark
soliton is stationary in the reference frame x+ t, whereas the traveling periodic wave moves
to the right direction relative to the dark soliton. We can see again that the phase shift of the
breather is equal to the wave period. If c2 =−0.15 ∈ (c1 + k1,0), the dark soliton moves faster
than the periodic wave (not shown).

If σ =−1 and c1 ∈ (k1 + 2,∞), the three intervals (c1 + k1,∞), (2,c1 − k1), and (−∞,0)
for the wave speed c2 are equivalent respectively to

−c2
2

∈ (−∞,λ0) , −c2
2

∈ (λ0 + k1,−1) , and − c2
2

∈ (0,∞) . (4.33)

The Lax spectrum of the breather solutions includes an additional eigenvalue − c2
2 relative to

the Lax spectrum Σ= [λ0,λ0 + k1]∪ [−1,∞) of the traveling periodic wave. The eigenvalue
− c2

2 is isolated in the first two cases of (4.33) and embedded in the third case of (4.33). The
first two cases in (4.33) are shown in figure 6 for the parameters of figures 7 and 8.

Figures 7–9 display the solution surfaces (side view on the left and top view on the right) for
the breather solution of theorem 3 with the three choices for c2 in (4.33). The solution surfaces
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Figure 6. The Lax spectrum for the breather solutions of figure 7 (left) and figure 8
(right).

Figure 7. The solution surface of |u|2 for the breather versus (x− c1t, t) for k1 = 0.25,
c1 = 2+ 2k1, and c2 = c1 + 2k1.

are shown in the reference frame x− c1t, in which the periodic wave of proposition 1 does not
travel in time.

Figure 7 is constructed for k1 = 0.25, c1 = 2+ 2k1, and c2 = c1 + 2k1 = 2+ 4k1 ∈ (c1 +
k1,∞). The breather solution has the bright soliton profile propagating to the right relative to
the periodic wave. Figure 8 is constructed for k1 = 0.25, c1 = 2+ 2k1, and c2 = c1 − 3

2k1 =
2+ 1

2k1 ∈ (2,c1 − k1). The breather solution has the dark soliton profile propagating to the
left relative to the periodic wave. In both cases, we can clearly see that the phase shift of the
breather is equal to the wave period of the traveling periodic wave.

Figure 9 is constructed for k1 = 0.25, c1 = 2+ 2k1, and c2 =−k1 ∈ (−∞,0). The breather
solution has the bright soliton profile propagatng to the left relative to the periodic wave. The
breather doe not exhibit any phase shift.

If σ =−1 and c1 ∈ (−∞,−k1), the periodic wave of proposition 1 travels to the left sym-
metrically relative to the speed 1, as follows from (4.10). The band [λ0,λ0 + k1] of the Lax
spectrum is now embedded into the continuous spectrum [−1,∞). The three intervals (2,∞),
(c1 + k1,0), and (−∞,c1 − k1) for the wave speed c2 are equivalent respectively to

−c2
2

∈ (−∞,−1) , −c2
2

∈ (0,λ0) , and − c2
2

∈ (λ0 + k1,∞) . (4.34)
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Figure 8. The solution surface of |u|2 for the breather versus (x− c1t, t) for k1 = 0.25,
c1 = 2+ 2k1, and c2 = c1 − 3

2k1.

Figure 9. The solution surface of |u|2 for the breather versus (x− c1t, t) for k1 = 0.25,
c1 = 2+ 2k1, and c2 =−k1.

The Lax spectrum of the breather solution includes an additional eigenvalue − c2
2 relative to

the Lax spectrum Σ= [−1,∞) of the traveling periodic wave. The eigenvalue is isolated in
the first case of (4.34) and embedded in the other two cases of (4.34). In both cases of the
embedded eigenvalue − c2

2 , it is located outside the spectral band [λ0,λ0 + k1]⊂ [−1,∞). In
spite of these differences between isolated and embedded eigenvalues, the breather solutions
for all three cases in (4.34) are very similar to the three cases in (4.33) if they are plotted
in the reference frame x− c1t and t. The breather solution with c2 ∈ (2,∞) has the bright
soliton profile propagating to the right relative to the periodic wave (not shown). The breather
solution with c2 ∈ (c1 + k1,0) has the dark soliton profile propagating to the right relative to
the periodic wave (not shown). The breather solution with c2 ∈ (−∞,c1 − k1) has the bright
soliton profile propagating to the left relative to the periodic wave (not shown). The breather
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solutions for (4.34) can be obtained by reflections of the relevant solutions for (4.33) due to
the symmetry between cases c1 ∈ (−∞,−k1) and c1 ∈ (2+ k1,∞) in (4.10).

4.4. N-breathers on the traveling periodic wave

We obtain a general breather solution of the nonlocal model (2.1) for N solitary waves
propagating on the background of the traveling periodic wave (4.4) and (4.5). To do so, we
use the explicit formulas for the (N+ 1)-periodic wave solution obtained in [39]. The solution
is written in the bilinear form (4.2) with the following functions:

f = detF, f̃= det F̃, g= γ detG, g̃= γ−1 det G̃, (4.35)

where matrices F= ( fjl)1⩽j,l⩽N+1, F̃= (f̃jl)1⩽j,l⩽N+1, G= (gjl)1⩽j,l⩽N+1, and G̃=
(g̃jl)1⩽j,l⩽N+1 are given by

fjl =
1
kj

exp

ikjξj−ϕj+
1
2

N+1∑
s=1,s̸=j

Ajs

δjl+ 2
cj− cl+ kj+ kl

,

f̃jl =
1
kj

exp

ikjξj+ϕj+
1
2

N+1∑
s=1,s̸=j

Ajs

δjl+ 2
cj− cl+ kj+ kl

,

gjl =
1
kj

exp

i kjξj−ψj+
1
2

N+1∑
s=1,s̸=j

Ajs

δjl+ 2
cj− cl+ kj+ kl

,

g̃jl =
1
kj

exp

ikjξj+ψj+
1
2

N+1∑
s=1,s̸=j

Ajs

δjl+ 2
cj− cl+ kj+ kl

,

with the parameters given by ξj = x− cjt− xj with arbitrary xj ∈ R, sgn(ϕj) = sgn(kj),

e2ϕj =
(cj− kj)(cj+ kj+ 2σ)
(cj+ kj)(cj− kj+ 2σ)

, eψj =
cj+ kj
cj− kj

eϕj , 1⩽ j ⩽ N+ 1, (4.36)

e−Aij =
(ci− cj)

2 − (ki + kj)
2

(ci − cj)
2 − (ki − kj)

2 , 1⩽ i 6= j ⩽ N+ 1, (4.37)

and

γ = exp

1
2

N+1∑
j=1

(ψj−ϕj)

 . (4.38)

We take the limit kj → 0 for 2⩽ j ⩽ N+ 1. It follows from (4.36) and (4.37) that

ϕj =
kj
αj

+O
(
k2j
)
, ψj =−

(1+σcj)kj
αj

+O
(
k2j
)
, 2⩽ j ⩽ N+ 1,

and

e−
1
2A1j = 1−β1jkj+O

(
k2j
)
, 2⩽ j ⩽ N+ 1, (4.39)

e−
1
2Aij = 1−

2ki kj

(ci − cj)
2 +O

(
k2i k

2
j

)
, 2⩽ i, j ⩽ N+ 1, (4.40)
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where

αj =−
σcj (cj+ 2σ)

2
, β1j =

2k1
(c1 − cj)

2 − k21
, 2⩽ j ⩽ N+ 1.

We multiply the first row of matrices F, F̃, G, and G̃ by k1 and the remaining rows of these
matrices by α2, · · · ,αN+1. The solution u given by (4.2) and (4.35) is not affected by this

transformation. Denoting the resulting matrices as F̂, ˆ̃F, Ĝ, and ˆ̃G, and taking the limit as
kj → 0 for 2⩽ j ⩽ N+ 1, we obtain

F̂=


1+ eik1ξ1−ϕ1 2k1

c1−c2+k1
· · · 2k1

c1−cN+1+k1
2α2

c2−c1+k1
F̂22 · · · 2α2

c2−cN+1

...
...

. . .
...

2αN+1

cN+1−c1+k1
2αN+1

cN+1−c2 · · · F̂N+1N+1

 , (4.41)

ˆ̃F=


1+ eik1ξ1+ϕ1 2k1

c1−c2+k1
· · · 2k1

c1−cN+1+k1
2α2

c2−c1+k1
ˆ̃F22 · · · 2α2

c2−cN+1

...
...

. . .
...

2αN+1

cN+1−c1+k1
2αN+1

cN+1−c2
· · · ˆ̃FN+1N+1

 , (4.42)

Ĝ=


1+ eik1ξ1−ψ1 2k1

c1−c2+k1
· · · 2k1

c1−cN+1+k1
2α2

c2−c1+k1
Ĝ22 · · · 2α2

c2−cN+1

...
...

. . .
...

2αN+1

cN+1−c1+k1
2αN+1

cN+1−c2
· · · ĜN+1N+1

 , (4.43)

and

ˆ̃G=


1+ eik1ξ1+ψ1 2k1

c1−c2+k1
· · · 2k1

c1−cN+1+k1
2α2

c2−c1+k1
ˆ̃G22 · · · 2α2

c2−cN+1

...
...

. . .
...

2αN+1

cN+1−c1+k1
2αN+1

cN+1−c2
· · · ˆ̃GN+1N+1

 , (4.44)

where

F̂jj =−αj (iξj+β1j)+ 1,

ˆ̃Fjj =−αj (iξj+β1j)− 1,

Ĝjj =−αj (iξj+β1j)−σcj− 1,

ˆ̃Gjj =−αj (iξj+β1j)+σcj+ 1,

for 2⩽ j ⩽ N+ 1. The general N-breather solution is obtained in the determinant form:

u= e
1
2 (ϕ1−ψ1)

det Ĝ

det F̂
, |u|2 = 1+σk1 − iσ

∂

∂x
ln

det F̂

det ¯̂F
, (4.45)

where F̂ and Ĝ are given by (4.41) and (4.43), with

γ1 = e
1
2 (ϕ1−ψ1) =

√
c1 + k1
c1 − k1
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obtained from (4.38). Determinants of matrices ˆ̃F and ˆ̃G obtained from (4.42) and (4.44) are
related to the complex-cojugate versions of determinants of matrices F̂ and Ĝ. If N= 1, then
the solution (4.45) recovers the breather solution of theorem 3.

Remark 10. Zeros of f and f̃ for every k1,k2, . . . ,kN+1 6= 0 are located in the lower and upper
halves of the complex plane of x, respectively, due to [18, lemma 1.1]. The rigorous proof that
the zeros of det F̂ and det ¯̂F in (4.45) obtained in the limit k2, . . . ,kN+1 → 0 are also located in
the lower and upper halves of the complex plane of x is left open for N⩾ 2.

5. Traveling periodic waves and breathers on the zero background

Here we follow the structure of section 4 but consider the traveling periodic waves at the
zero background. The solutions of the nonlocal model (2.1) on the zero background are only
meaningful in the case of σ =−1, hence we take σ =−1 in what follows, see remark 11.

5.1. Traveling periodic waves

Assume that f and f̃ have only zeros in the lower and upper half of the complex plane of x,
respectively. Modifying (4.2) with

u=
g
f
, ū=

g̃

f̃
, |u|2 = i

∂

∂x
ln
f

f̃
, (5.1)

we transform the nonlocal model (2.1) with σ =−1 into the following system of bilinear
equations: 

(
iDt+D2

x

)
f · g= 0,(

−iDt+D2
x

)
f̃ · g̃= 0,

iDx f · f̃− g · g̃= 0,
(5.2)

which replaces the system (4.3). The following proposition states the existence of the traveling
periodic waves.

Proposition 3. The nonlocal model (2.1) with σ =−1 admits the traveling periodic wave in
the form

u(x, t) =
γ1ei k1ξ1−ϕ1

1+ ei k1ξ1−ϕ1
, |u(x, t) |2 = k1 sinhϕ1

cosk1ξ1 + coshϕ1
, (5.3)

with ξ1 = x− c1t− x1, c1 =−k1, and γ1 =
√
k1(e2ϕ1 − 1), where k1 > 0, ϕ1 > 0, and x1 ∈ R

are arbitrary parameters.

Proof. Let us consider the following solution of the bilinear equation (5.2):{
f = 1+ eik1ξ1−ϕ1 , f̃= 1+ eik1ξ1+ϕ1 ,
g= γ1eik1ξ1−ϕ1 , g̃= γ1,

(5.4)

where ξ1 = x− c1t− x1, with some parameters k1 ∈ R, ϕ1 ∈ R, c1 ∈ R, x1 ∈ R, and γ1 ∈ R.
The bilinear equation (5.2) are satisfied if and only if

c1 =−k1, γ2
1 = k1

(
e2ϕ1 − 1

)
.

Without loss of generality, we can consider k1 > 0, hence ϕ1 > 0 from requirement that f and
f̃ admit zeros only in the lower and upper half-planes, respectively. Since γ2

1 > 0, then γ1 ∈ R
and ū= g̃

f̃
is complex conjugate of u= g

f .
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Figure 10. The profile of |u|2 versus x for σ =−1, k1 = 0.25, and either ϕ1 = 1 (left)
or ϕ1 = 0.5 (right).

Remark 11. The traveling periodic waves on the zero background are not admissible in the
nonlocal model (2.1) with σ =+1 because γ2

1 < 0, which results in γ1 ∈ iR and |u(x, t)|2 < 0.

Remark 12. Without the loss of generality, one can set k1 = 1 due to the scaling transforma-
tion (2.4). We will keep k1 > 0 as a free parameter for clarity of notations.

Figure 10 displays the spatial profile of the traveling periodic waves given by (5.3) for
k1 = 0.25 and two choices of ϕ1. The wave with smaller ϕ1 has larger maxima and smaller
minima for |u|2 given by

max
ξ1∈R

k1 sinhϕ1

cosk1ξ1 + coshϕ1
= k1 coth

(
ϕ1

2

)
and

min
ξ1∈R

k1 sinhϕ1

cosk1ξ1 + coshϕ1
= k1 tanh

(
ϕ1

2

)
.

The period of the traveling periodic wave is 2π
k1
.

The long-wave limit of the periodic wave (5.3) appears as k1 → 0, where the periodic wave
transforms into a solitary wave. As k1 → 0, the nontrivial limit exists in (5.3) if and only if ϕ1 =
α1k1 → 0 with arbitrary α1 > 0. We obtain from (5.3) after the transformation x1 7→ x1 +π/k1
in the limit k1 → 0 that

u(x, t) =

√
2α1

i (x− x1)−α1
, |u(x, t) |2 = 2α1

α2
1 +(x− x1)

2 . (5.5)

The solution (5.5) represents the bright soliton with the profile decaying to zero at infinity. The
arbitrary parameter α1 > 0 can be normalized to unity due to the scaling transformation (2.4).
Variational characterization of the soliton solution (5.5) has been studied in [28].
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5.2. Lax spectrum of the traveling periodic wave

To obtain the exact solutions of the linear system (2.5) with σ =−1, we use the representa-
tions (4.13) and (5.1). The system of bilinear equatons (4.14) remains the same and we rewrite
this system for σ =−1 as

(iDx+λ)φ · f + g · h= 0,
h · f̃−µh̃ · f −φ · g̃= 0,(
iDt+λ2

)
φ · f +(iDx+λ)h · g= 0,(

iDt− 2iλDx+D2
x

)
h · f = 0,(

iDt− 2iλDx+D2
x

)
h̃ · f̃= 0.

(5.6)

The following proposition describes the Lax spectrum for the traveling periodic wave with the
spatial profile (5.3) based on the exact solutions of the system (5.6).

Proposition 4. Let u be the traveling periodic wave in proposition 3. The Lax spectrum Σ in
definition 1 consists of two bands [0,k1] and [0,∞), where [0,k1] is embedded into [0,∞).

Proof. We proceed differently for q− ≡ 0 and q− 6= 0.
If q− ≡ 0, then h̃≡ 0. The second solution of system (5.6) implies that

h=
φ g̃

f̃
.

Since q+ = ūp is analytic in C+, then h is required to be analytic in C+. Since f̃ admits zeros
in C+, then φ must be divisible by f̃ so that

φ = mf̃, h= mg̃, (5.7)

with some m= m(x, t) to be determined (required to be analytic in C+).
From the first equation of system (5.6) we find with the help of the third equaton of

system (5.2) that

imx+λm= 0. (5.8)

From the third equation of system (5.6), we obtain with the help of (5.8) that(
imt+λ2m

)
f̃ · f + im

(
Dt f̃ · f +Dxg̃ · g

)
= 0,

which together with (5.4) results in

imt+λ2m= 0. (5.9)

From the fourth equation of system (5.6) and (5.4), we obtain

(imt− 2iλmx+mxx) f +m(−i ft+ 2iλfx+ fxx)− 2mxfx = 0,

which is satisfied due to (5.4), (5.8), and (5.9). Solving (5.8) and (5.9) yields

m(x, t) = eiλx+iλ
2t,

with the constant of integration normalized to unity. By using (4.13) and (5.7), we obtain the
exact expression for the components p and q+ of the eigenfunctions with q− ≡ 0:

p= eiλx+iλ
2t 1+ eik1ξ1+ϕ1

1+ eik1ξ1−ϕ1
, q+ =

γ1eiλx+iλ
2t

1+ eik1ξ1−ϕ1
. (5.10)

The component q+ is analytic in C+ and bounded as Im(x)→+∞ for every t ∈ R if and only
if λ⩾ 0. Hence, [0,∞) belongs to the Lax spectrum Σ.
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If q− 6= 0, then we obtain solutions for h and h̃ by using the last two equations of sys-
tem (5.6). Given f in (5.4), we separate the variables in the form

h= ei(θξ1+Ωt)
(
1+Aeik1ξ1−ϕ1

)
,

with some θ, Ω, and A to be determined. The fourth equation in system (5.6) is satisfied if and
only if

Ω= θ (2λ− θ− k1) and A=
λ− θ

λ− θ− k1
,

which yields the explicit solution

h= eiθ(ξ1+(2λ−θ−k1)t)

(
1+

λ− θ

λ− θ− k1
eik1ξ1−ϕ1

)
. (5.11)

With similar computations from the fifth equation in system (5.6), we obtain the explicit
solution

h̃= eiθ(ξ1+(2λ−θ−k1)t)

(
1+

λ− θ

λ− θ− k1
eik1ξ1+ϕ1

)
, (5.12)

where parameter θ ∈ R has to be the same due to the coupling between h and h̃ in the second
equation of system (5.6). Now q+ and q− are analytic and bounded inC+ andC− respectively
if and only if θ= 0. This yields the unique representation of the components q+ and q− in the
form

q+ =
1

1+ eik1ξ1−ϕ1

[
1+

λ

λ− k1
eik1ξ1−ϕ1

]
(5.13)

and

q− =
1

1+ eik1ξ1+ϕ1

[
1+

λ

λ− k1
eik1ξ1+ϕ1

]
. (5.14)

We note from (5.13) and (5.14) that q± are analytic and bounded in C± according to
definition 1 since k1 > 0 and ϕ1 > 0.

It remains to find a bounded function p from the first three equations of system (5.6).
Resorting to the second equations (5.6) and (5.4), we arrive at

φ =
1
γ1

(
hf̃−µh̃f

)
. (5.15)

Substituting (5.4), (5.11), (5.12), and (5.15), with θ= 0 into the first equation of (5.6), we
obtain

λ(1−µ)e3i k1ξ1−ϕ1 +λ

[
1+

2k1 (µ− 1)
λ− k1

+
λ(1− 2µ)
λ− k1

+ e−2ϕ1

(
λ+ γ1
λ− k1

−µ

)]
e2i k1ξ1

+
[
k1 + γ1 + 2λ(1−µ)+ e2ϕ1 (λ(1−µ)− k1)

]
eik1ξ1−ϕ1 +λ(1−µ) = 0.

This relation is satisfied if and only if µ= 1. By using (5.15), we obtain

φ =− γ1
λ− k1

eik1ξ1−ϕ1 (5.16)

and

p=− γ1
λ− k1

eik1ξ1−ϕ1

1+ eik1ξ1−ϕ1
. (5.17)
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Finally, we have confirmed that the third equation is satisfied by using (5.4), (5.11) with θ= 0,
and (5.16). The periodic function q− in (5.14) has zero mean value at λ= 0. Hence the band
[0,k1] belongs to the Lax spectrum Σ.

Remark 13. It follows from (5.10) and (5.17) that p is analytic and bounded in C+. We note
again that although this was not a requirement on solutions of the linear system (2.5), this
property follows from the fact that the spatial profile u in (5.3) is analytic in C+, see also
remark 6.

Remark 14. The band [0,k1] of proposition 4 can be formally obtained from the band [λ0,λ0 +
k1] of proposition 2 in (4.15) since λ0 =− c1+k1

2 = 0 if c1 =−k1. The other band [0,∞) of
proposition 4 is a shifted version of the band [−1,∞) in (4.15) due to the change from a
nonzero to zero background.

Remark 15. The Lax spectrum of the algebraic soliton (5.5) is found in the limit k1 → 0 of
proposition 4. It consists of the spectral band [0,∞) and a simple embedded eigenvalue at 0,
which is the end point of the continuous spectrum.

5.3. Breathers on the traveling periodic wave

To obtain a solitary wave on the background of the traveling periodic wave (5.3), we first
construct the double-periodic wave solution from the bilinear equations (5.2). The following
theorem gives the most general double-periodic solution, where we have verified consistency
of the assumptions on f and f̃ to have only zeros in the lower and upper halves of the complex
plane of x, respectively.

Theorem 4. The nonlocal model (2.1) with σ =−1 admits two families of the double-periodic
wave solution expressed by the representation (5.1) with

f = 1+ ei k1ξ1−ϕ1− 1
2A12 + ei k2ξ2−

1
2A12 + ei k1ξ1−ϕ1+i k2ξ2 ,

f̃ = 1+ ei k1ξ1+ϕ1− 1
2A12 + ei k2ξ2−

1
2A12 + ei k1ξ1+ϕ1+i k2ξ2 ,

g = γ12

[
ei k1ξ1−ϕ1− 1

2A12 +α2ei k1ξ1−ϕ1+i k2ξ2
]
,

g̃ = γ12

[
ei k2ξ2−

1
2A12 +α2

]
,

(5.18)

where ξj = x− cjt− xj with arbitrary xj ∈ R, k1 > 0, ϕ1 > 0, c1 =−k1, k2 6= 0,

α2 =
c2 − k2
c2 + k2

, e−A12 =
(c1 − c2)

2 − (k1 + k2)
2

(c1 − c2)
2 − (k1 − k2)

2 =
(c2 − k2)(c2 + 2k1 + k2)
(c2 + k2)(c2 + 2k1 − k2)

,

and

γ2
12 = k1

(
e2ϕ1 − 1

) c2 + k2
c2 − k2

.

The two families are defined by the two intervals for the speed c2: either c2 ∈ (|k2|,∞) or
c2 ∈ (−∞,−|k2| − 2k1).

Proof. We have verified validity of the explicit expression (5.18) by substituting them into
the bilinear equation (5.2). The complex conjugate symmetry between u and ū in (5.1) holds
if and only if γ2

12 > 0. This corresponds to α2 > 0 since k1 > 0 and ϕ1 > 0. Therefore, either
c2 > |k2| or c2 <−|k2|.
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Next we prove that zeros of f and f̃ are located in the lower and upper halves of the complex
plane of x, respectively, if

(c1 − c2)
2
> (k1 + |k2|)2 ,

for k1 > 0 and k2 6= 0. Since c1 =−k1, this constraint is rewritten as

(c2 − |k2|)(c2 + |k2|+ 2k1)> 0,

hence it provides further restrictions on the speed c2: either c2 ∈ (|k2|,∞) or c2 ∈
(−∞,−|k2| − 2k1).

In order to consider zeros of f, we note that e−A12 → 1 if k1 → 0 or k2 → 0 which yields the
factorization formula:

f →
(
1+ eik1ξ1−ϕ1

)(
1+ eik2ξ2

)
as e−A12 → 1.

Zeros of the factorization for f correspond to either Imξ1 =−ϕ1/k1 < 0 or Imξ2 = 0. The first
set is already in the lower half-plane. To prove that the second set moves to the lower half-
plane for small k1 > 0 and k2 6= 0, we compute the perturbation terms beyond the factorization
formula. The first-order Taylor expansion of f in variable k1 is as follows:

f =
(
1+ e−ϕ1

)(
1+ eik2ξ2

)
+ k1

[
iξ1e

−ϕ1
(
1+ eik2ξ2

)
− 2k2
c22 − k22

(
e−ϕ1 + eik2ξ2

)]
+O

(
k21
)
.

Let ξ0 = (2n+ 1)π/k2 be a simple zero of (1+ e−ϕ1)(1+ eik2ξ2) = 0 for n ∈ Z so that

∂ξ2 f = i k2
(
1+ e−ϕ1

)
eik2ξ0 +O (k1)

=−i k2
(
1+ e−ϕ1

)
+O (k1) 6= 0.

By using the implicit function theorem, we obtain the root of f = 0 for small k1 > 0 as

ξ2 = ξ0 −
2i k1

(
1− e−ϕ1

)(
c22 − k22

)
(1+ e−ϕ1)

+O
(
k21
)

as k1 → 0.

Since (c2 − k2) = α2(c2 + k2) and α2 > 0, then c22 − k22 > 0. Since k1 > 0 and ϕ1 > 0, we con-
clude that Im(ξ2)< 0 for every n ∈ Z, hence all roots of f are the lower half-plane for small
k1 > 0 and fixed k2 6= 0.

Let us now show that the zeros of f do not cross the real axis for arbitrary k1 > 0 and k2 6= 0.
If f = 0 and ξ1, ξ2 ∈ R, then we have the system{

1+ e−ϕ1− 1
2A12 cosk1ξ1 + e−

1
2A12 cosk2ξ2 + e−ϕ1 cos(k1ξ1 + k2ξ2) = 0,

e−ϕ1− 1
2A12 sink1ξ1 + e−

1
2A12 sink2ξ2 + e−ϕ1 sin(k1ξ1 + k2ξ2) = 0.

By using

k1ξ1 =
k1ξ1 + k2ξ2

2
+
k1ξ1 − k2ξ2

2
, k2ξ2 =

k1ξ1 + k2ξ2
2

− k1ξ1 − k2ξ2
2

and trigonometric identities for addition/subtraction formulas, we rewrite the system in the
equivalent form:[

cos
1
2
(k1ξ1 + k2ξ2)+ e−

1
2A12 cos

1
2
(k1ξ1 − k2ξ2)

](
e−ϕ1 + 1

)
cos

1
2
(k1ξ1 + k2ξ2)

−
[
sin

1
2
(k1ξ1 + k2ξ2)+ e−

1
2A12 sin

1
2
(k1ξ1 − k2ξ2)

](
e−ϕ1 − 1

)
sin

1
2
(k1ξ1 + k2ξ2) = 0,
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[
sin

1
2
(k1ξ1 + k2ξ2)+ e−

1
2A12 sin

1
2
(k1ξ1 − k2ξ2)

](
e−ϕ1 − 1

)
cos

1
2
(k1ξ1 + k2ξ2)

+

[
cos

1
2
(k1ξ1 + k2ξ2)+ e−

1
2A12 cos

1
2
(k1ξ1 − k2ξ2)

](
e−ϕ1 + 1

)
sin

1
2
(k1ξ1 + k2ξ2) = 0.

Since ϕ1 > 0, eliminating cos 1
2 (k1ξ1 + k2ξ2) and sin 1

2 (k1ξ1 + k2ξ2) yields the equivalent sys-
tem of equations:

[
cos 1

2 (k1ξ1 + k2ξ2)+ e−
1
2A12 cos 1

2 (k1ξ1 − k2ξ2)
]
= 0,[

sin 1
2 (k1ξ1 + k2ξ2)+ e−

1
2A12 sin 1

2 (k1ξ1 − k2ξ2)
]
= 0,

which can be rewritten further as
(
1+ e−

1
2A12

)
cos 1

2k1ξ1 cos
1
2k2ξ2 −

(
1− e−

1
2A12

)
sin 1

2k1ξ1 sin
1
2k2ξ2 = 0,(

1+ e−
1
2A12

)
sin 1

2k1ξ1 cos
1
2k2ξ2 +

(
1− e−

1
2A12

)
cos 1

2k1ξ1 sin
1
2k2ξ2 = 0.

(5.19)

The determinant of coefficients for cos 1
2k2ξ2 and sin 1

2k2ξ2 in (5.19) is equal to ξ1-independent
quantity

1− e−A12 =
4k1k2

(c2 + k2)(c2 − k2 + 2k1)
,

which is nonzero and bounded if k1 > 0, k2 6= 0 and either c2 ∈ (|k2|,∞) or c2 ∈ (−∞,−|k2| −
2k1). Hence, no zeros of f cross the real line for arbitrary k1 > 0 and k2 6= 0, and, since they are
in the lower half-plane for small k1 > 0 and fixed k2 6= 0, they remain in the lower half-plane
for every k1 > 0 and k2 6= 0.

Remark 16. The N-periodic solution of the nonlocal model (2.1) with σ =−1 was recently
obtained in [43, theorem 1]. However, the parameter restriction in equation (14) of [43],

q1 < 0= p1 < q2 < p2 < .. . < qN < pN (5.20)

only recovers the family of solutions in our theorem 4 with c2 ∈ (|k2|,∞). The other family of
solutions with c2 ∈ (−∞,−|k2| − 2k1) is recovered from the alternative parameter restriction

pN < qN < .. . < p2 < q2 < q1 < 0= p1. (5.21)

The location of zeros of f in the lower half-plane of x was proven in [43, proposition 2] for
the parameter restriction (5.20). One can show that the same proof can be extended for the
parameter restriction (5.21). In theorem 4, we gave an alternative proof of the location of
zeros of f in the lower half-plane of x, which works for both families of solutions but only in
the case of N= 2.

Each family of the double-periodic waves in theorem 4 generates only one family of breath-
ers on the background of the traveling periodic wave of proposition 3 in the limit k2 → 0,
according to the following corollary.

Corollary 2. The nonlocal model (2.1) with σ =−1 admits two families of breather solutions
on the traveling periodic wave (5.3). The solutions exist in the form (5.1) with

f = β12
(
1− ei k1ξ1−ϕ1

)
− iξ2

(
1+ ei k1ξ1−ϕ1

)
,

f̃= β12
(
1− ei k1ξ1+ϕ1

)
− iξ2

(
1+ ei k1ξ1+ϕ1

)
,

g= γ1ei k1ξ1−ϕ1 (χ12 − iξ2) ,
g̃= γ1 (−χ12 − iξ2) ,

(5.22)
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where ξj = x− cjt− xj with arbitrary xj ∈ R, k1 > 0, ϕ1 > 0, c1 =−k1,

γ2
1 = k1

(
e2ϕ1 − 1

)
> 0, β12 =

2k1
c2 (c2 + 2k1)

> 0, and χ12 =
2(c2 + k1)
c2 (c2 + 2k1)

.

The two families are defined by the two intervals: either c2 ∈ (0,∞) or c2 ∈ (−∞,−2k1).

Proof. We obtain in the long-wave limit k2 → 0 that

α2 = 1− 2k2
c2

+O
(
k22
)
, e−A12 = 1− 4k1k2

c2 (c2 + 2k1)
+O

(
k22
)
.

Hence e−
1
2A12 = 1−β12k2 +O(k22). The expressions (5.22) are obtained from (5.18) at the

order of O(k2) after the transformation x2 7→ x2 +π/k2. The two families of double-periodic
waves in theorem 4 give the two families of breathers with either c2 ∈ (0,∞) or c2 ∈
(−∞,−2k1) for which β12 > 0.

Next we prove that the zeros of f and f̃ are located in the lower and upper half-planes,
respectively, for either c2 ∈ (0,∞) or c2 ∈ (−∞,−2k1). Setting f = 0 in (5.22) yields

ei k1ξ1−ϕ1 =
β12 − iξ2
β12 + iξ2

.

Similarly to the proof of theorem 3, we denote the root of this equation by x= xR+ i xJ ∈ C
with xR = Re(x) and xJ = Im(x). Then, xR and xJ are obtained from

eik1ξ̃1e−k1xJ−ϕ1 =
β12 + xJ− i ξ̃2
β12 − xJ+ i ξ̃2

,

where ξ̃j = xR − cjt− xj, j = 1,2 are real. Taking modulus in the equation yields

e−k1xJ−ϕ1 =

√√√√ (β12 + xJ)
2
+ ξ̃22

(β12 − xJ)
2
+ ξ̃22

.

If xJ ⩾ 0, this equation yields a contradiction since the left-hand side is less than 1 for k1,ϕ1 > 0
and the right-hand side is larger than 1 for β12 > 0. Hence, xJ = Im(x)< 0 for every root of f.

Remark 17. The intervals (0,∞) and (−∞,−2k1) for parameter c2 are equivalent to

−c2
2

∈ (−∞,0) and − c2
2

∈ (k1,∞) .

The Lax spectrum of the corresponding breather solutions include an additional eigenvalue
− c2

2 outside the band [0,k1] in the Lax spectrum Σ in proposition 4. However, there are dif-
ferences between these two cases. For c2 ∈ (0,∞), the new eigenvalue is isolated from Σ and
for c2 ∈ (−∞,−2k1), the new eigenvalue is embedded into Σ\[0,k1].

Figures 11 and 12 display the solution surfaces (side view on the left and top view on
the right) for the breather solution of corollary 2 with two choices for c2 versus the original
variables (x, t). For k1 = 0.25, ϕ1 = 1, and c2 = k1 ∈ (0,∞) on figure 11, the breather solution
has the bright soliton profile propagating to the right of the periodic wave traveling to the left.
For k1 = 0.25, ϕ1 = 1, and c2 =−3k1 ∈ (−∞,−2k1) on figure 12, the breather solution has
the bright soliton profile propagating to the left faster than the periodic wave. In both cases,
no phase shift appears after the bright soliton passes the traveling periodic wave.
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Figure 11. The solution surface of |u|2 for the breather versus (x, t) for k1 = 0.25,ϕ1 = 1,
c1 =−k1, and c2 = k1.

Figure 12. The solution surface of |u|2 for the breather versus (x, t) for k1 = 0.25,ϕ1 = 1,
c1 =−k1, and c2 =−3k1.

5.4. N-breathers on the traveling periodic wave

We obtain a general breather solution of the nonlocal model (2.1) with σ =−1 for N solitary
waves propagating on the background of the traveling periodic wave (5.3). To do so, we use
the explicit formulas for the (N+ 1)-periodic wave solution obtained in [43] but extend the
choices for {k2, . . . ,kN+1} and {c2, . . . ,cN+1} in a more general setting as in theorem 4.

The (N+ 1)-periodic wave solution is given by

u=
g
f
, |u|2 =−

N+1∑
j=1

kj+ i
∂

∂x
ln
f

f̄
(5.23)
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with

f = det(F) , g= γ det(G) ,

where F= ( fjl)1⩽j,l⩽N+1 and G= (gjl)1⩽j,l⩽N+1 are given by

fjl =
1
kj

exp

ikjξj−ϕj+
1
2

N+1∑
k=1,k̸=j

Ajk

δjl+ 2
cj− cl+ kj+ kl

and

gjl =


1
k1
exp

(
ik1ξ1 −ϕ1 +

1
2

N+1∑
k=1,k̸=j

Ajk

)
, 1⩽ j ⩽ N+ 1, l= 1,

fjl, 1⩽ j ⩽ N+ 1, 2⩽ l⩽ N+ 1,

with ξj = x− cjt− xj for arbitrary xj ∈ R, with k1 > 0, ϕ1 > 0, c1 =−k1 and kj 6= 0, ϕj = 0 for
2⩽ j ⩽ N+ 1, and with

γ2 = k1
(
e2ϕ1 − 1

)N+1∏
j=2

cj− kj
cj+ kj

and

e−Aij =
(ci − cj)

2 − (ki + kj)
2

(ci− cj)
2 − (ki − kj)

2 , 1⩽ i 6= j ⩽ N+ 1.

The admissible intervals for cj, 2⩽ j ⩽ N+ 1 are given by cj ∈ (|kj|,∞) or cj ∈ (−∞,−|kj| −
2k1) for 2⩽ j ⩽ N+ 1. In addition, we have

(ci − cj)
2
> (|ki|+ |kj|)2 , 2⩽ i, j ⩽ N+ 1.

We take the limit kj → 0 for 2⩽ j⩽ N+ 1 and use the expansions (4.39) and (4.40) again
with

β1j =
2k1

(c1 − cj)
2 − k21

=
2k1

cj (cj+ 2k1)
> 0.

Multiplying the first row of F and the first column of G by k1 and taking the limit, we denote
the resulting matrices as F̂ and Ĝ and obtain them in the form:

F̂=


1+ eik1ξ1−ϕ1 − 2k1

c2
· · · − 2k1

cN+1
2

c2+2k1
−iξ2 −β12 · · · 2

c2−cN+1

...
...

. . .
...

2
cN+1+2k1

2
cN+1−c2

· · · −iξN+1 −β1N+1

 (5.24)

and

Ĝ=


eik1ξ1−ϕ1 − 2

c2
· · · − 2

cN+1

eik1ξ1−ϕ1 −iξ2 −β12 · · · 2
c2−cN+1

...
...

. . .
...

eik1ξ1−ϕ1 2
cN+1−c2

· · · −iξN+1 −β1N+1

 . (5.25)
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The general N-breather solution is obtained from (5.23) in the closed determinant form

u= γ1
det Ĝ

det F̂
, |u|2 =−k1 + i∂x ln

det F̂

det ¯̂F
, (5.26)

where γ2
1 = k1(e2ϕ1 − 1), whereas F̂ and Ĝ are given by (5.24) and (5.25). The wave speeds

satisfy either cj ∈ (0,∞) or cj ∈ (−∞,−2k1) for 2⩽ j ⩽ N+ 1. In particular, if N= 1, then
the solution (5.26) with (5.24) and (5.25) recovers the breather (5.22) in corollary 2.

Remark 18. Zeros of f and f̃ for every k1,k2, . . . ,kN+1 6= 0 are located in the lower and upper
halves of the complex plane of x, respectively, due to [43, proposition 2] and its extension,
see remark 16. The rigorous proof that zeros of det F̂ and det ¯̂F in (5.26) obtained in the limit
k2, . . . ,kN+1 → 0 are also located in the lower and upper halves of the complex plane of x is
left open for N⩾ 2, see also remark 10.

6. Conclusion

We have studied the nonlocal derivative NLS equation, a new emerging model for deep fluids
to describe modulations of wave packets and the continuum limit in the dynamics of particles.
For the defocusing version of this nonlocal model, we proved the linear stability of the nonzero
constant background for decaying and periodic perturbations and the nonlinear stability for
periodic perturbations. For the focusing version, we proved the linear stability under a non-
resonance condition on the initial data and the nonlinear stability for sufficiently small periods.

We have systematically studied the traveling periodic waves, their Lax spectrum, and the
existence of breathers propagating on the background of the traveling periodic waves. In the
defocusing case, there is only one family of traveling periodic waves on the nonzero constant
background andwe have shown existence of exactly two families of single breathers, both have
the dark (depression) profiles. In the focusing case, there are two families of traveling periodic
waves on the nonzero constant background, each admits three families of single breathers, two
of which have the bright (elevation) profiles and one has the dark (depression) profile. Also
in the focusing case, there is only one family of traveling periodic waves on the zero back-
ground and two families of single breathers, both have the bright (elevation) profiles. We have
related the existence of breathers with the bands of the Lax spectrum for the traveling periodic
waves. Surprisingly, breathers associated with either isolated or embedded eigenvalues in the
Lax spectrum feature the same dynamics. Multi-breather solutions are obtained in the closed
determinant form.

We conclude by formulating further questions related to this study which can be considered
in near future.

(1) Can the nonlinear stability or instability of the nonzero constant background be proven in
the focusing case for sufficiently large periods? What is the long-term dynamics of the lin-
early (algebraically) growing periodic perturbations at the resonance due to the nonlinear
effects?

(2) Do there exist any exact solutions describing nonlinear instability of the traveling periodic
waves in the focusing case? On comparison with the focusing cubic NLS equation with the
modulational instability of the traveling periodic waves and the rogue waves on their back-
ground, dynamics in the nonlocal derivative NLS equation does not show any instability
or rogue wave phenomena in the class of exact solutions considered in our work.

(3) Dynamics of the breathers on the traveling periodic waves would naturally appear in the
semi-classical limit from initial data with different boundary conditions at infinities. The
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dispersive hydrodynamics for the nonlocal derivative NLS equation in the focusing case is
open for further studies, see [41] for Whitham’s modulation theory in the defocusing case.
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