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Abstract
A nonlocal derivative nonlinear Schrodinger equation describes modulations
of waves in a stratified fluid and a continuous limit of the Calogero—Moser—
Sutherland system of particles. For the defocusing version of this equation, we
prove the linear stability of the nonzero constant background for decaying and
periodic perturbations and the nonlinear stability for periodic perturbations.
For the focusing version of this equation, we prove the linear stability of the
nonzero constant background under a non-resonance condition on the initial
data and the nonlinear stability for sufficiently small periods. For both versions,
we characterize the traveling periodic wave solutions by using Hirota’s bilinear
method, both on the nonzero and zero backgrounds. For each family of travel-
ing periodic waves, we construct families of breathers which describe solitary
waves moving across the periodic background. A general breather solution
with N solitary waves propagating on the periodic background is derived in a
closed determinant form.
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1. Introduction

One of the main models of the modern nonlinear physics is the nonlinear Schrodinger (NLS)
equation which describes a slow modulation of small-amplitude, nearly harmonic waves [24,
34]. Due to the scaling transformation, the cubic NLS equation can be written in the dimen-
sionless form

iu, = —Mxx:|2|u|2’/l, ulx,t):RxR—C, (NLS¥)

where the upper and lower signs correspond to the defocusing and focusing versions of this
model, respectively. For the defocusing NLS™ equation, localized perturbations of the zero
background scatter to zero as the time evolves and stable dark solitons propagate on a nonzero
constant background which is linearly and nonlinearly stable in the time evolution. For the
focusing NLS™ equation, stable bright solitons propagate on the zero background due to
the balance between nonlinearity and dispersion whereas the nonzero constant background
is unstable with rogue waves appearing from nowhere and disappearing without any trace.
These phenomena were reviewed in [17, 20, 49].

The purpose of this work is to consider stability of the nonzero constant background and
propagation of solitary waves on the traveling periodic wave background in the nonlocal deriv-
ative NLS (NDNLS) equation. Due to the scaling transformation, the model can be written in
the dimensionless form

iuy =g £u(i +H) (|u]?) u(x,t):RxR—C, (NDNLS®)

X )
where H is the Hilbert transform which can be defined on R either according to the following
integral formula,

1 e d
H(f):= —P.V. B f)()y_)xy7

or according to the Fourier transform by H(e**) = isgn(k)el®, k € R.

The NDNLS™ equation was derived in [45, 47] in the context of modulation theory for
internal waves in a stratified fluid. It appears as an asymptotic reduction of the integrable
Benjamin—Ono (BO) equation for the envelope of modulating wave packets. A more general
intermediate NLS equation was derived from an intermediate long-wave equation in [45]. The
intermediate NLS equation connects NLS™ in the limit of shallow fluid and NDNLS™ in the
limit of deep fluid. Integrability and existence of the Lax pair for the NDNLS™ equation was
established in [46] and was used in many studies of periodic and solitary waves [39—42].

The NDNLS ™ equation was obtained as a continuum limit for dynamics of particles in the
Calogero—Moser—Sutherland (CMS) system [1, equation (40)], see also [52] for review of the
CMS system. The NDNLS™ equation is related to a Hamiltonian formulation of the complex
extension of the BO equation with a bi-directional wave propagation. The recent interest to
this model was inspired by applications of methods of harmonic analysis to weak turbulence
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in the integrable nonlocal equations with the localized data on the infinite line [28]. Global
well-posedness and blow-up in infinite or finite time were studied in [32, 33, 35-37]. Traveling
periodic waves and dynamics of the initial-value problem in the periodic domain were analyzed
in [3-5]. Numerical approximations of the model with the spectral method were developed in
[2]. Coupled systems of nonlocal integrable equations were also discussed in [6, 7, 50].

In analogy with the cubic NLS* equations, the two versions of the NDNLS* equations
are referred to as ‘defocusing’ (upper sign) and ‘focusing’ (lower sign). However, we will
show here that the nonzero constant background does not exhibit the rogue wave phenomenon.
Solitary waves propagate steadily on the nonzero constant background as dark solitons for the
‘defocusing’ version [39, 45] and bright solitons for the ‘focusing’ version [28, 43]. The linear
stability of the nonzero constant background for decaying and periodic perturbations and the
nonlinear stability for periodic perturbations is proven for the NDNLS* equation. The proof of
the linear and nonlinear stability for the NDNLS~ equation holds only under some restrictions.

The traveling periodic wave background has been recently studied in the cubic NLS
equation [9, 10, 21] and the Korteweg—de Vries (KdV) equation [22, 29, 30] because it arises
naturally due to the gradient catastrophe of the wave profiles in the limit of small dispersion.
For the defocusing cubic NLS equation, dark solitons propagate on the stable traveling peri-
odic wave background [38, 48, 51] (see also [8, 31] for the KdV equation and [44] for the
defocusing modified KdV equation). For the focusing cubic NLS equation, bright breathers
and rogue waves arise on the unstable traveling periodic wave background [16, 23] (see also
[11, 15] for the cubic derivative NLS equation and [12, 13] for the discrete NLS and discrete
modified KdV equations).

We will show that solitary waves propagate steadily on the traveling periodic wave back-
ground in both versions of the NDNLS® equations. This suggests that the physics terminology
of the two versions as ‘defocusing’ and ‘focusing’ is not justified. We conjecture that the trav-
eling periodic wave is linearly stable with respect to small perturbations. The latter question
is left open for further studies. Compared to the propagation of solitary waves on the elliptic
traveling wave background in the NLS, KdV, and modified KdV equations, the correspond-
ing solutions for the NDNLS* equations are expressed by the elementary (trigonometric and
power) functions.

Propagation of solitary waves in the NDNLS* equations is very similar to the one in the BO
equation explored in our previous work [14]. For the defocusing NDNLS™ equation, we only
obtain dark solitons propagating on the traveling periodic wave background. For the focusing
NDNLS™ equation, we obtain both bright and dark solitons on the traveling periodic wave
background. The characteristic properties of such solutions depend on the Lax spectrum asso-
ciated with the traveling periodic wave explored recently in [4] based on earlier work [25-27]
for the BO equation. From the technical point of view, we rely on the Hirota’s bilinear form
both for the NDNLS* equations and their Lax pair representation [39, 42, 43]. By degenera-
tion of the multi-periodic solutions, we obtain a closed determinant form for N solitary waves
propagating on the traveling periodic wave background.

Let us now summarize the main findings of this work.

e Theorem 1 gives the linear stability of the nonzero constant background for decaying per-
turbations in the defocusing case and for the initial data satisfying a non-resonance condition
in the focusing case.

e Theorem 2 gives the nonlinear stability of the nonzero constant background for periodic
perturbations in the defocusing case.

e Corollary 1 gives the nonlinear stability of the nonzero constant background for periodic
perturbations of sufficiently small periods in the focusing case.
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e Propositions 1 and 2 give the explicit solutions for the traveling periodic waves on the
nonzero constant background and their Lax spectrum.

e Theorem 3 gives the explicit solutions for the breathers on the traveling periodic waves.
General expressions are also given in section 4.4.

e Propositions 3 and 4 give the explicit solutions for the traveling periodic waves on the zero
background and their Lax spectrum in the focusing case.

e Theorem 4 and corollary 2 give the explicit solutions for the double-periodic waves on the
zero background and the breathers on the traveling periodic waves in the focusing case.
General expressions are also given in section 5.4.

The paper is organized as follows. Section 2 contains preliminary facts about the NDNLS®
equations. Linear and nonlinear stability of the nonzero constant solution is considered in
section 3. The traveling periodic waves, their Lax spectrum, and breathers on their background
are obtained in sections 4 and 5 for nonzero and zero constant backgrounds, respectively.
Section 6 concludes the paper.

2. Lax pair for the nonlocal derivative NLS equations

Both versions of the nonlocal derivative NLS equations can be rewritten as

iy =ty +ou(i +H) (lu]?) u(x,t) :RxR— C, .1

X 3
where the sign parameter o is
0=+1 & ‘defocusing’ and o=-1 < ‘focusing’.

Several symmetries are identical between the NLS . and NDNLS 1. equations. The list includes
the translational and rotational symmetries

u(x,1) »—>u(x+x0,t+t0)ei‘9°, X0,%0,0p € R, (2.2)
the Lorentz transformation

u(x,t) — e zerHicy, (x—ct,1), ceR, (2.3)
and the scaling symmetry

u(x,t) = au (azx, a4t) , a>0. (2.4)
The symmetry transformation (2.2) can be used to set the translational parameters of the trav-
eling periodic wave to zero. The Lorentz transformation (2.3) can be used to normalize the
profile of the traveling waves as Im(x) — £o0, see expressions (4.4) and (5.3) in propositions
1 and 3. The scaling transformation (2.4) can be used to normalize the nonzero constant back-

ground to unity, see expression (4.2), or the period of the traveling periodic wave on the zero
background to 2, see remark 12.
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The nonlocal model (2.1) is a compatibility condition of the following linear system

ipx+Ap+ugt =0,

gt —pq~ +oup =0,

ip+Np+dugt +i (ugt —ugt) =0,

iqi —2i\gE +qE+oq* [(+i +H) (ju]?) ] =0,

where ) is the spectral parameter, & denotes the complex conjugation of u, and (p,q™,q~ ) are
components of the eigenfunction, in which g™ and g™~ are analytic in the upper and lower half
of the complex plane of x, respectively. If we use the projection operators P+ := %(l FiH),
then we have

2.5)

gt =P*¢t and 0=PTg*. (2.6)

Although the linear system (2.5) has been derived previously, see, e.g. [43, 46], we add a
quick derivation by differentiating the first equation in ¢ and the third equation in x:

ipu+Ap+ugt 4 ug =0,
ipi+ Npe+ Mgt + gl +i (ugl, — uwg™) =0.

Substituting p, and ¢;"” from the third and fourth equations of the system (2.5) and p, from the
first equation yields the nonlocal model (2.1) from the commutability condition p,; = p;,. The
second equation of system (2.5) does not appear in the compatibility condition, but it defines
g™ and g~ by means of projections:

gt =—oPT(ap) and ¢ =op P (ap), .7

where p is an additional parameter to be determined.
Since —id, and P+ are self-adjoint operators in L2-based Hilbert spaces such as L?(RR) or
L3... the Lax operator £, : H' C L> — L* given by

L,:=—i0;+ouP™ (u-) (2.8)

is self-adjoint. By the spectral theorem in Hilbert space L?, the Lax spectrum (the set of admiss-
ible values of the spectral parameter \) is a subset of the real line.

If solutions of the nonlocal model (2.1) in H' are restricted in the space of analytic functions
in C4, then u € H' N L%, where L% is defined by L := {u € L*: P*u = u}. Then ug™ and
uq} —u,q™ are analytic functions in C, so that the linear system (2.5) can be closed for
p being also analytic in C,.. This brings the spectrum of a restricted self-adjoint operator
Lulpz H' NL% C L* — L% C L? given by

Lulp =—i0:+ oPtuPt (u-) (2.9)

and considered in [4, 28] for periodic and soliton solutions. In consistency with this restriction,
we will show in our work that the profile u of the traveling periodic waves satisfies u € H' N L%r
and that the component p of the eigenfunction satisfies p € H' N L%r, from which the spectra
of £, and L, 1, are equivalent, see propositions 1-4.

As in the case of the BO equation [14], there are two exact solutions of the linear sys-
tem (2.5) if u is the spatial profile of the traveling periodic wave. The first solution has g~ =0
and the second solution has both g™ and ¢~ nonzero.

For the first solution, the admissible values of A in the Lax spectrum are defined by the exist-
ence of bounded components (p, g™, g~ = 0) of the eigenfunction such that g™ is analytic and
bounded in C.. For the second solution, it is not sufficient to look for the bounded components
(p,q*,q™) of the eigenfunction for which ¢* are analytic and bounded in C. [14]. Based on
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propositions 2.2 and C.2 of [25] for the BO equation, we need to define the additional spec-
tral bands in U)o [\, A + k1], where {Xo, A1, ..., Ay} are admissible values of A for which the

mean value of nonzero ¢~ over the spatial period of u is zero. The values of {A\g, A, ..., Ay}
correspond to the spectrum of the Lax operator £, : HIIJer C Lger — le)er closed in the space of

periodic functions with the spatial period of u such that the projection formula (2.7) yields

ygfdx:—aygﬁpd% uygq‘deO,

where ¢ denotes the integral of a L-periodic function over the period [0, L] independently of
the starting point of integration.
The requirements on the admissible values of A are summarized as follows.

Definition 1. The Lax spectrum of the linear system (2.5) is the set of admissible values of A
for which the components (p,g ", ¢~) of the eigenfunction are bounded functions of x with g*
being analytic and bounded in C4 respectively. In addition, if g~ # 0, then the Lax spectrum
includes U}V:O [N, A\j + k1], where { X, A1, ..., Ay} are the admissible values of A for which the

mean value of g~ over the spatial period of u is zero.

3. Stability of the nonzero constant background

The simplest solution of the nonlocal model (2.1) is the nonzero constant solution u(x,7) =
up € C\{0}. The constant value uy € C can be normalized to unity without loss of generality
due to the scaling symmetry (2.4) and the rotational symmetry (2.2).

The following result gives the linear stability of the nonzero constant background with
respect to decaying perturbations.

Theorem 1. Let u = 1+ v and consider the linearized equations of motion
ivi=vt+o(i+H)(vi+7y). (3.1

If o = 41, then for every initial data vy € H*(R), s > 0, the unique solution v € C°(R, H*(R))
to the linearized equation (3.1) with v|;,—g = vy satisfies

V(1) | < Cllwo

for some constant C> 0. If o = —1, then for every vo € H*(R)NL*?(R), s >0, p > % with
Do € CY(R) satisfying vo(£1) =0, the unique solution v € C°(R,H*(R)) to the linearized
equation (3.1) with v|,—o = vy satisfies

v (,0) [l < Cllwol

Here Vy is the Fourier transform of vy and L*?(R) = {f € L*(R) : |x|’f € L*(R)}.

m forevery te R, 3.2)

wnizr forevery teR. 3.3)

Proof. Separating the real and imaginary parts in the linear equation (3.1) asv = A 4+ i B yields
the coupled system

A, = By, +20A,,
—B, = Ay +20HA,.

Let A, B denote the Fourier transform of A, B with Fourier parameter k € R. The Fourier trans-
form brings the system to the form

S e
{A,— KB+ 20ikA, (3.4)

B, =K*A+20k|A,
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from which we obtain the following characteristic equation,
N —2igkA+ K (K* +20k|) =0.
Due to the factorization
(A—iok)’ + K (k| +0)* =0,
the characteristic equation admits two solutions
A1 (k) = —ik|K],
Ao (k) =ik(20 + |k]).
Since \; (k), A2 (k) € iR, solution A and B of system (3.4) are bounded functions of tif Ay (k) #
A2 (k). For k=0, we have A;(0) = X\2(0) = 0 but the system (3.4) gives constant A and B in .

If o = +1, then there exist no solutions of A (k) = A2(k) with k # 0. Hence, forevery k € R,
there exists C > 0 such that

A+ B <C(AKO)+BKO)I), reR, (3.5)

so that the bound (3.2) holds.
If 0 = —1, then there exist solutions k = £1 of A (k) = A\,(k) = Fi. For every k # £1, we
obtain the unique bounded solution of the system (3.4),

Ak, 1) = kCy (K)e MK g &, (k) kK =21,
Bk,) = i (Jk| —2) 1 (k) e K — jsgn (k) & (k) K21

for some #-independent C; (k) and C, (k) that only depend on A(k,0) and B(k,0) according to
the exact expressions:

o isgn(k)A(k,0)+ B (k,0)
T

. o i (k[ —2)A(k,0) — kB (k,0)
CO="Towy

Ifvo € H*(R)NL*P(R), s > 0,p > 2, then A(k,0),B(k,0) are C'(R) functions by the Fourier
theory. If they satisfy the constraints A(41,0) = B(£1,0) =0, then the estimate (3.5) is
replaced by

A’ (k,0) |+ |B’ (k,0)[, |k <2,

A (k1) |+ |B (k,1) | < C{ |A (k,0)| + |B(k,0)|, |k >2,

teR,

so that the bound (3.3) holds. O

Remark 1. In the defocusing case o = 41, the linear stability of theorem 1 can be extended
to the space of periodic functions Hy,(0,L), s > 0 for every period L > 0.

Remark 2. In the focusing case 0 = —1, the resonance of A;(k) = \p(k) for k= =+1 sug-
gests the linear instability of the constant solution # = 1 in the space of 27-periodic functions.
Indeed, the system (3.4) for k = £1 and o = —1 admits two solutions, one of which is linearly
growing in ¢:
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A(:l:l,t) = (6‘1 —l—ézl‘) CIit,
B(+1,0) = (Fiéy + (Fit— 1) &) e,

for some r-independent ¢; and &, obtained from A(+£1,0) and B(+1,0). This linear instability
is missed in L2,.(0, L) if the spatial period L is not divisible by 27.

‘per

In order to obtain the nonlinear stability of the nonzero constant background, we use the
conserved quantities, see equations (6.8) in [46] and (A.16)—(A.18) in [43]. The nonlocal
model (2.1) on R with the boundary conditions |u(x,t)| — 1 as |x| — oo for every ¢ € R admits
the following conserved quantities:

I (u):/R(|u|2—1)dx,
L(u)= '/R(uﬁx—ﬁux)dx—l—U/R(|u\4—l)dx,
I (u) :/]R (ux|2— éa|u|2(ﬁux—ﬁxu) — %a\u|2H(|u\2)x+%(|u|6— 1)) dx.

The conserved quantities can be defined for the L-periodic functions on the L-periodic domain
by replacing fR with ¢. In what follows, we only consider the L-periodic functions. A suitable
combination of the conserved quantities leads to the following nonlinear stability result in the
defocusing case o = +1.

Theorem 2. For every fixed L > 0, there exists 6 > 0 such that for every vy € H'..((0,L),C)

per

with HV()HHlI)er < 6, the unique solution u € C°(R,Hy,,((0,L),C)) to the nonlocal model (2.1)
with 0 = +1 and with u|,—o = 1 + vy satisfies

||e_i9(’)u(~,t) — 1||Hl'm < C||v0||Héﬂ forevery teR, (3.6)
for some constant C > 0 and some function 0 € C°(R).

Proof. By substituting # = 1 + v in the conserved quantities, expanding them in v, and integ-
rating by parts, we obtain

L (1+4v) =7§(v+v+|v|2)dx,
L(1+v)—20l; (1+V) :iyg(vvx—ﬁvx)dx+0§£(v+v+|v|2)2dx,
L(+v)—ochL(1+v)+L(1+v) :§£<|vx|2+;J(v—&—V)K(v—i-v)—i-N(v)) dx,

where K = —HO, = |0,| and N(v) contains nonlinear terms from cubic to sixth-order powers
of v:

N)=ioh* (1 —v) + %U (V0 — V) + %a\v\z (W — Pvy)
3

1 1
—o(v+v)H(P), - §a|v|2H(|v|2)X +3 (v+v+ )

Local well-posedness of the nonlocal model (2.1) in H'(R,C) has been proven in [19], this
result is also extended in H'.((0,L),C) [3]. The Lyapunov functional is defined by

per

AW):=L(1+v)—chL(1+v)+1i(14+v), veHy((0,L),C). (3.7)

8
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In the defocusing case o = +1, the quadratic part of A is positive and coercive in v €
H,((0,L),C) for the spatially varying part of the perturbation v. Indeed, if we use Fourier

series
v(x) = Zﬁnew, v(x)= Zﬁ_ney,

ne”z nez

then we obtain by Parseval’s equality

2 1 _ _ 47T2n2 ~ 12 ~ = 2
oal? + 5 (VK 9) [ de =D == [3l* + 7[5 + -,
nez

where we have used the Fourier symbol of K from K(el*) = |k|e!**, k € R. Neglecting the

second term in the lower bound and using Poincaré inequality for the first term, we get the
coercivity bound

, 1 _ _ 1 , 2n? 2

5 0K+ 9) [ dv > Sl + e = Foll, (3.8)

which allows us to control the Hllm((O,L),(C) norm of the spatially varying part of the local
solution v € C° ((7T0,T0),Hlljer((0,L),(C)) for some 79 > 0 from the conserved value of the
Lyapunov functional A.

It remains to control the mean value of the perturbation v. We can preserve the zero-mean
constraint for the imaginary part of v by using the rotational invariance (2.2) and introducing

the orthogonal decomposition
(o) =01 vGn),  fime)dr=o.

where the modulational parameter § € C°((—79,70),R) is uniquely defined for the local solu-
tion v € C°((—70,70), Hper((0,L),C)) from zeros of f(6) : R — R given by

f(0) = yglm (e u—1)dr.

By the implicit function theorem, there exists a unique 6 € R forevery u € Hl"er in the ball with
small infyeg [le™u— 1| < CHV()”HlI)u.
To control the mean value of the real part of the perturbation v, we use the first conserved

quantity /; and Parseval’s equality to obtain

Li(1+v)=2Lbg+Lig+L > [9a],
neZ\{0}

where 7y € R due to the zero-mean constraint ¢ Im(v)dx = 0. This yields
Lbg+1)? =L (1+v)+L—L Y [hL<h(1+v)+L,
n€Z\{0}

or
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Since I;(1 + v) is conserved in time, Cauchy—Schwarz inequality implies that
[ (1) | < 2VL||vollz2 + [Ivoll -

Due to the smallness of ||vo||;2, there is a constant C >0 independently of the initial data
vo € H},..((0,L),C) (which may change from one line to another line) such that

o JIERGTY)
o) < VLR 1< el 69)

which controls vy (¢) for every ¢t € (—79,79). Due to the Banach algebra of HII) the nonlinear

terms of A(v) are controlled by

er’

Peras < (bl + b, ) (.10)
Since the value of A(v) is conserved in time ¢ € R and ||vo|| m,, is small, we obtain the bound
AW) <l -

By using the coercivity of the quadratic part of A(v) for the varying part of v, the zero-mean
constraint for Im(v), and the control of the mean value of Re(v), we obtain with triangle
inequality and bounds (3.8)—(3.10) that

v o) i, < 190 () 2+ 11v (5 0) = Vo () [

per per

VL[ (1) |+ C/A (V)
Cllvoll

per

NN

for every r€ (—7y,70). Since this bound is independent of #, the local solution v €&
C°((—o, 7'0),Hlljer((O,L)7 C)) can be extended globally to yield the bound (3.6). O

Corollary 1. Theorem 2 holds in the focusing case o = —1 for every L € (0,7).

Proof. In the focusing case o = —1, the quadratic part of A(v) is given by

b= 30040 avm 34 (RGP 4+, ) — 4 b RGP
nez

It is clear that it is sign-definite for L < 7r, hence the same Lyapunov functional (3.7) can be
used for the proof of nonlinear stability of the constant solution u# = 1 if L < 7. The rest of the
proof holds verbatim. 0

Remark 3. For L € [7,00), itis an open problem to prove the nonlinear stability of the constant
solution u =1 with respect to perturbations in H}..((0,L),C) in the focusing case o = —1.

This interval includes the periods L multiple to 27, for which the linear instability holds by
remark 2.
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4. Traveling periodic waves and breathers on the nonzero background

We introduce the bilinear formulation of the nonlocal model (2.1) and the linear system (2.5).
We use the bilinear formulation to obtain the traveling periodic wave in section 4.1. Lax spec-
trum of the traveling periodic wave is computed in section 4.2. By using the Lax spectrum
and the double-periodic solutions, we construct the exact solution for the solitary wave on
the background of the traveling periodic wave in section 4.3. Section 4.4 gives a closed-form
solution for N solitary waves on the background of the traveling periodic wave as a quotient
of determinants.

Without loss of generality, we normalize the nonzero background for the traveling periodic
wave to unity due to the scaling symmetry (2.4). We also refer to solitary waves on the traveling
periodic wave as to the breathers, similar to the terminology used in [14, 31, 44], due to the
periodic character of the interaction between the solitary wave and the traveling periodic wave.

4.1. Traveling periodic wave

Assume that f and f have only zeros in the lower and upper half of the complex plane of x,
respectively. Then, f,/f and f, /f are analytic in the upper and lower half-planes, respectively.
By using the projection formulas (2.6), we obtain

>’ f_ P f 0 -
+7 - = — — - = — —
P p lnf o2 Inf, P pr lnf p In f. 4.1)
Substitution
u=8 =8 uP=i—icZml 4.2)
f f ox f

transforms the nonlocal model (2.1) into the following system of bilinear equations (also used
in [39, 43, 45]):

(iD+D3)f-g=0,
(—iDi+D})f-8=0, 4.3)
iDif f+o(g-g—ff)=0.

The following proposition summarizes the state-of-art in the existence of the traveling peri-

odic waves on the nonzero background. Although we give a proof for the sake of completeness,
similar solution waveforms have been obtained in [4, 39, 43].

Proposition 1. The nonlocal model (2.1) admits the traveling periodic wave in the form

iki &1 —y 1+eik151+¢1

1 _ 1+€ _ _1 _
u(x,r) = e2 (V1790 B (x,) = e 2T e

1 4 eiki&i—¢1’ “4)
and
0k1 sinh QZ51

" coski&; + coshgy

u(x,0) > =1 4.5)

where ki >0 and & = x — ¢t — x; with arbitrary x| € R, whereas ¢; >0 and | € R are
uniquely determined by

26 (Cl—kl)(C1+k1+20') n C]+k1 Py
(4 = : e = —2e .
(Cl+k1)(C1—k1+20') c1— ki

The parameters k; > 0 and c| € R are further restricted as follows:

(4.6)

1
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o Ifo=1 thenk € (0,1)andc; € (—2+ki,—k).
o Ifo=—1, then k| € (0,00) and either c| € (k; +2,00) or ¢ € (—o0,—ky).

Proof. Let us consider the following solution of the bilinear equation (4.3):

— ik1§]7¢1 ~: ikl£]+¢l
{ f=1+e , f=1+e , a7

g=m (1 +eik1€1—w1) . 8= ,71*1 (1 +eik1§1+w1) ’

where £, = x — ¢t — x;. The real parameters k|, c|, x| are arbitrary as long as the sign of ¢,
coincides with the sign of ky, since f and f given by (4.7) must only have zeros in the lower and
upper half-planes, respectively. The real parameter ~y, is arbitrary as long as u is a complex
conjugate of u.

The bilinear equation (4.3) are satisfied if and only if coefficients ¢; and ¢, are uniquely
determined by (4.6). Substituting (4.7) into (4.2), we obtain the traveling wave solution in the
form (4.4) and (4.5) with u = % being the complex conjugate of u = % if and only if 7, is a
real root of the quadratic equation:

c1+k

2 _ L thi—é1
=e = .
M c—k

It remains to obtain the admissible values for parameters k; and c¢; from the condition that
the sign of ¢ must coincide with the sign of k; and that 712 > 0. Due to the symmetry of k; in
the expression for e2® given by (4.6), we can consider k; > 0 without loss of generality, with
¢ > 0. The admissible values for k| and c; are defined from the inequalities:

c+k; (lekl)(cl+k1+20)
>0 and > 1. 4.8
c—k (C1+k1)(6‘1—k1+20) 4.8)
There are four cases to be considered for both c =1 and o0 = —1.

If o = +1, we obtain:

e If ¢; — k; > 0, the second inequality in (4.8) yields k; < 0, a contradiction.

o If c; —k; <0and c; + k; > 0, then the first inequality in (4.8) is contradictory.

eIfci—ki<Oandcy+k <Obutc; —k; +2>0andc; +k; +2 >0, then ky € (0,1) and
¢1 € (=2 + k1, —k). The second inequality in (4.8) yields k; > 0, which is true.

o Ifc; —k; <Oandc; +k <Obutc; —k; +2 < 0andc; + k| + 2 < 0, the second inequality
in (4.8) yields k; < 0, a contradiction.

If o = —1, we obtain:

e If ¢; > k; + 2, both inequalities in (4.8) are satisfied for k; > 0.

e If ¢; > k; but ¢; < 2 —ky, then k; € (0,1) but the second inequality in (4.8) yields k; < 0,
a contradiction.

o If c; <k but ¢; > —kj, the first inequality in (4.8) is contradictory.

e If c; < —kj, both inequalities in (4.8) are satisfied for k; > 0.

To summarize, only one solution exists for o = +1 with k; € (0,1) and ¢; € (—2+k;,—k;)
and two solutions exist for ¢ = —1 with either ¢; € (k; +2,00) or with ¢; € (—o0,—k;) for
every k; > 0. O
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Figure 1. The profile of |u|* versus x for o = 41, k; = 0.25, and either ¢; = —1 (left)
or c; = —0.5 (right).

Remark 4. It follows from (4.4) that u and u are analytic in C, and C_ respectively. This
was not a requirement on solutions of the nonlocal model (2.1). Nevertheless, the traveling
periodic waves satisfy this property.

Remark 5. The traveling periodic waves can be extended by using the translational and rota-
tional symmetries (2.2) and the Lorentz transformation (2.3), whereas the scaling transforma-
tion (2.4) has been used to normalize the nonzero background to unity.

To study properties of the traveling periodic waves of proposition 1, we note that the exist-
ence intervals for the wave speed c; are symmetric relative to —o. In other words, replacing c;
by —20 — ¢ yields the same expression for e>?' in (4.6) and hence for |u(x,?)|* in (4.5). The
existence intervals can be formulated symmetrically as

o=+1: C1+1€(—1+k1,1—k1), kle(O,l) “4.9)

o=—1: ¢ —le(—00,—~1—k)U(1+k,00), ki €(0,00). (4.10)

Without loss of generality, we can consider travelng periodic waves for ¢; + o > 0.

Figure 1 gives the spatial profile of |u|* given by (4.5) for 0 = +1, k; = 0.25, and two
choices of c; in (4.9). The wave profiles are of the depression type and the profile with ¢; =
—1 reaches the zero value (left panel). Figure 2 shows the spatial profile of |u|* for o = —1,
ki = 0.25, and two choices of c; in (4.10). The wave profiles are of the elevation type with
larger amplitudes for larger speeds.

The long-wave limit of the periodic wave appears as k; — 0 where the periodic wave
reduces to a solitary wave. As k; — 0, it follows from (4.6) that ¢; — 0 and ¢»; — 0 according
to the power expansions

20k, 2(c1+0)k
o (c1+20) ¢ (1 +20)
For each family of proposition 1, we have ¢; > 0 if k; > 0. We obtain from (4.4) and (4.5)
after the transformation x; — x; + 7 /k; in the limit k&; — O that
20 (c1 +20)
2+iocy(c1+20)&

b= +0(k), Y= +0(k),

u(xt)=1- 4.11)

13
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Figure 2. The profile of |u|2 versus x for o = —1, k; = 0.25, and either ¢; = 2+ 2k;
(left) or ¢; = 2 + 4k, (right).

and

4cy (1 +20)
ct(c1+ 20)25% +4
If 0 = +1, the existence interval for ¢; € (—2+ k;, —k;) becomes ¢; € (—2,0) in the limit

ki — 0. Since ¢; < 0 and ¢; 42 > 0, the algebraic soliton is the dark soliton on the nonzero
constant background with the smallest intensity attained at £; =0:

lu(x,0) > =1+ (4.12)

min Ju(x,0) = (1+¢1)” < 1.
(x,r)ER?

If o = —1, the existence intervals for ¢; € (k; +2,00) and ¢; € (—00, —k;) become ¢; €
(2,00) and ¢; € (—00,0) in the limitk; — 0. Since either ¢; < 0 or ¢; > 2, the algebraic soliton
is the bright soliton on the nonzero constant background with the largest intensity attained at
& =0:

2 2
|17 =(1— > 1.
(Xr’gaeﬁzlu(x )F=(0—c)

4.2. Lax spectrum of the traveling periodic wave

To obtain the exact solutions of the linear system (2.5), we use the representation (4.2) and
introduce

© L h _ h
p== 4 =7 4 == (4.13)
f f f
where f andfare given by (4.7) and ¢, h, and h are to be found. By using (4.1), (4.2), and (4.13),
the linear system (2.5) is reduced to the following system of bilinear equations (also used in
[39, 43]):
(iDi+ N g f+g-h=0,
h-f—ph-f+op-g=0,
(iDi+X) @ -f + (iDx+ A h-g =0, (4.14)
(iD, —2i\D,+ D3) h-f=0,
(iD,—2iADx+D2)h-f=0.

14
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The following proposition identifies the Lax spectrum for the traveling periodic wave with
the spatial profile (4.4) and (4.5) based on the exact solutions of the system (4.14).

Proposition 2. Let u be the traveling periodic wave in proposition 1. The Lax spectrum in
definition 1 is located in

c1+k cr — ki
- X+ k=— . 4.15
5 0+ ki 5 (4.15)

EZ[)\o,)\Q—‘y—kl]U[O’,OO), Ao =

o [fo=+1,thenk; € (0,1) and c¢; € (=2 + k1, —k1) so that (Ao, Ao + k1] C (0,1) is isolated
from [1,00).

o I[fo=—1, then ky € (0,00) and either ¢, € (ki + 2,00) for which [Xo, Ao + k1] is isolated
from [—1,00) or ¢; € (—o0, —k1) for which [Ao, Ao + k1] is embedded into [—1,00).

Proof. We proceed differently for g~ =0and g~ # 0.
If g~ =0, then & = 0. The second equation of system (4.14) implies that

A
f
Since g = —oip is analytic in C, then £ is required to be analytic in C. Since f admits
zeros in C., then ¢ must be divisible by f so that
o =mf, h=—omg, (4.16)

with some m = m(x,) to be determined (required to be analytic in C).
From the first equation of system (4.14) we find with the help of the third equaton of
system (4.3) that

ime+(A—o)m=0. 4.17)

From the third equation of system (4.14), we obtain with the help of the third equaton of
system (4.3) and (4.17) that

[im+ (N =1)m]f-f+im (D, — oDy)f-f —oD.g-g| =0.
From the fourth equation of system (4.14), we obtain with the help of (4.17) that

limi+ (XN —1)m]g-f+m(iD,—2ioD;+D;)g-f =0.
By using the exact solution (4.6) and (4.7), we verify that

(D —oDy)f-f —oDxg-g =0,

(iD,—2ioD,+D;)§-f =0,

which imply that

im+ (N —1)m=0. (4.18)
Solving (4.17) and (4.18) yields

m ()C, f) _ ei(A—a’)x-&-i(x\z—l)t
with the constant of integration normalized to unity. By using (4.13) and (4.16), we obtain the
exact expression for the components p and g™ of the eigenfunctions with g~ = 0:

1 +elhisiten Loy (X)L ehste

_ A —oti( N1 2 T +_ - Iemsrrs
—¢ ( )lJreiklEl*d?l’ 9 == ¢ 1 +eki&i—¢1" (4.19)

p

15
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The component g™ is analytic in C and bounded as Im(x) — +oc for every € R if and only
if A > 0. Hence, [0,00) € X belongs to the Lax spectrum (4.15).

If g~ #0, then we obtain solutions for /# and h by using the last two equations of sys-
tem (4.14). Given f in (4.7) we separate the variables in the form

h = el(061+0) (1 +Aeik1§1*¢>1) ,
with some 6, 2, and A to be determined. The fourth equation in system (4.14) is satisfied if
and only if

A—2
Q=0(ci+21—0) and 4= SLt2A=20+hk

c1+2XN—260 -k ’
which yields the explicit solution
- _ F2A =204k ¢
h = f@tetax=on (| AT AT EVTH kg —¢, | 420
© M T 20

With similar computations from the fifth equation in system (4.14), we obtain the explicit
solution

i = eifEHe22—0)n (1, < +2A=20+k héi+on
c1 +2)\—20—k ’

where parameter 6 € R has to be the same due to the coupling between 4 and h in the second
equation of system (4.14). Now ¢+ and ¢~ are analytic and bounded in C; and C _ respectively
if and only if = 0. This yields the unique representation of the components g and ¢~ in the
form

1 cr+2A+ky e
+ _ i iki§1— 4.21
1 1 + eiki&i—¢ |: c1+2\—k © ] ( )
and
_ 1 c1+2MN+k &+
= . 1 . 4.22
q 1+ eki&itor { 2N —Fk (4.22)

It remains to find p from the first three equations of system (4.14). Given f and g in (4.7) and
h in (4.20) with 8 =0, we separate the variables in the form:

¢ =B (1+Cehevr), (4.23)
with some parameters B and C to be determined. The first equation of system (4.14) is satisfied
if and only if

c1+2A+k
C1—|-2/\—k1'

The value of p is obtained from the second equation in system (4.14) which yields

B=—-yA"! and C=

o =ag" (uhf )
with

S CL+2M+ki o
— D1 iki &
'uhf hf ('u )< C1+2/\7kle

e | o0 c1+2\+k 71 —é _c + 2\ + kg
e {e <u01+2>\—k1 te H 1422 —k )|

16
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Due to the exact solution (4.23), uhf — hf must be divisible by g which is true if and only if
p=1-—o)"".

With this restriction on parameter ;1 € R of the linear system (4.14), we obtain the explicit
expression for the component p of the eigenfunction:

B ’)/1)\_1 c1+22+k eiklfl—dﬂ
1 + etki&i— ¢ c1+2)\ =k

The third equation in system (4.14) can be rewritten with the help of the first equation in (4.14)
in the form

p= (4.24)

i (D;—AD,) ¢ -f+iDh-g=0.

Using (4.6), (4.7), (4.20) with =0, and (4.23) we have verified that this equation is satisfied.
Thus, (4.21), (4.22), and (4.24) give the exact solution of (2.5) for g~ # 0. The components
g* are analytic in C and bounded as Im(x) — oo for every ¢ € R.

According to definition 1, we check the mean value of ¢~ to obtain the additional bands
UJN:O[)V, Aj + k1] of the Lax spectrum. Since ¢~ is analytic in C_, we use the geometric series
to represent ¢~ in the form

oo

- _|a + 22+ ky —|—eik‘§‘¢‘:| (_l)ée*wkl&*&ﬁl’
=0

c1+2\—k 7

from which it follows that the mean value of ¢~ is zero at only one point given by
c1+2 o +k =0.

This yields only one additional band [A\g, Ao + k1] in the Lax spectrum given by (4.15).
Finally, we compare the location of [Ag, Ao + k] relative to [o, 00).

o Ifo=+1,thenc) € (—2+ky,—k;) sothat A\g > 0and Ao+ k; < 1and [Xg, Ao + k1] € (0,1)
is isolated from [1,00).

e If o0 = —1, then either ¢; € (k; +2,00) so that A\g+k; < —1 and [Ag, Ao+ k1] is isol-
ated from [—1,00) or ¢; € (—o0,—k;) so that Ag > —1 and [, Ao + k1] is embedded into
[—1,00).

This completes the proof of proposition. O

Remark 6. It follows from (4.19) and (4.24) that p is analytic and bounded in C.. This was
not a requirement on solutions of the linear system (2.5). Nevertheless, since the spatial profile
u in the traveling periodic wave is analytic in C., see remark 4, the Lax spectrum of the linear
operators £, and L,,| 1> see (2.8) and (2.9), are identical to each other and p is also analytic
in C+.

Remark 7. The Lax spectrum of the algebraic soliton (4.11) and (4.12) appears in the limit

ki — O of proposition 2. It consists of the spectral band [,00) and a simple eigenvalue at

Ao =—5%.

e Ifo =+1,thenc; € (—2,0) and A\g € (0, 1) is isolated from the continuous spectrum [1, o).

o If o = —1, then either ¢; € (2,00) and Ay € (—o0, —1) is isolated from the continuous spec-
trum [—1,00) or ¢; € (—00,0) and Ay € (0,00) is embedded into the continuous spectrum
[—1,00).
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4.3. Breathers on the traveling periodic wave

To obtain a solitary wave on the background of the traveling periodic wave (4.4) and (4.5), we
start with the double-periodic wave solution of the nonlocal model (2.1) obtained in [39, 43].
By using the representation (4.2), we write the double-periodic wave solution in the form:

f = 1+eik1§1*¢>1*%A12 +eik2§2*¢2*%A12 Jreiklil*<l51+ikz£z*¢z7
f — 1+eik1§1+¢1*%A12 +eik2§z+¢2*%A12 +eiklfl+¢l+ik2£2+¢27
g =7 |:1+eikl‘5171/)17%A12 Jreikz&*lﬂz*%f\]z +eik1€1*¢1+ikz€2*wz}’ (4.25)

g = 71*21 [1 +eik1€1+¢1*%A12 +eik2§2+w2*%f\12 +eik1§1+¢1+ik252+¢2:| ,
where & = x — ¢t — x; with arbitrary x; € R, sgn(¢;) = sgn(k;),

2o = GGk T20) oy, Gtk sy (4.26)
(¢j+ k) (¢j — ki +20) ¢j —kj

N )’ = (ki + k)

e , 4.27)
(c1 =)’ = (ki — k)’
and
Y2 = e1(1—¢1)+3(2—d2) (4.28)
The parameters k; » and ¢ » must satisfy the same restrictions as in proposition 1:
o If o =+1,thenk; € (0,1) and ¢j € (=24 kj, —k;),j = 1,2.
e If o = —1, then k; € (0,00) and either ¢; € (k; +2,00) or ¢; € (—o0, —kj),j = 1,2.
In addition, the parameters must satisfy the restriction
(c1 —2)* > (Jk| + |ka])?, (4.29)

which was proven in [18, lemma 1.1] for the BO equation. If the constraint (4.29) is satisfied
and sgn(k;) = sgn(¢;) for j = 1,2, then the zeros of f and fare located in the lower and upper
half-planes, respectively. This result of [18] holds for the nonlocal model (2.1) because the
functional representations of f and fin (4.25) is identical to that for the BO equation.

The following theorem gives the new breather solutions on the background of the traveling
periodic wave.

Theorem 3. The nonlocal model (2.1) admits breather solutions on the traveling periodic
wave (4.4) and (4.5). The solutions exist in the form (4.2) with

fo=(—icng) (1+eM87%) fanfy (1 —efie=1),
fo==(+im&) (1+eM8+0) 4 ayByp (1 - ehasiton) |
, e . (4.30)
g =-n(l+oc+im&) (1+eM97) +y 1P (1 —eh& ¥,
g = ’71_] (1400 —ian) (1 +€ik1§‘+¢‘) —|—’)/1_1042,612 (1 — eik‘5‘+¢l) ,
where

c1+k 1 2k,
=/ S0, o= — = 20) 50, Bpi= —— =1 S0, 431
ol c —h a 50€ (c2+20) Bi2 ol r (4.31)

1
Families of breather solutions are defined by the following intervals for admissible values
of ca:
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o [fo=+1, thenc| € (—2+ ki, —k1) and either c; € (=2,c1 — ki) or ¢ € (¢1 +k1,0).

o [fo=—1, then
— either ¢| € (ki +2,00) with either c; € (¢1 +ki,00) or c; € (2,¢1 — k1) or ¢ € (—00,0)
— orcy € (—o0,—ky) with either c; € (2,00) or ¢; € (¢ +k1,0) or ¢z € (—00,¢1 —ky).

Proof. We consider the double-periodic wave solution in the form (4.25) fork; > Oand k, > 0
without loss of generality so that ¢; > 0 and ¢, > 0. By taking the long-wave limit k, — 0
in (4.26) and (4.27), we obtain the asymptotic expansions:
k 1+o0c)k
n=2i0(g), wn--UFalk,

(&%) €%)

0 (1),
and
™1 =1 — Bk, + O (i3)

with the corresponding expressions for a; > 0 and S, > 0 in (4.31). The expressions for f,
f, g, and g in (4.30) are obtained from (4.25) at the order of O(¢,) after the transformation
Xp — xp + 7 /ky. The expression for v; > 0 in (4.31) follows from the limit k&, — 0 of 2
in (4.28).

Let us now analyze the constraints on & » and ¢ » as well as the additional constraint (4.29).
As k, — 0, it follows from (4.29) that either ¢, > ¢; + k; or ¢, < ¢ — k.

e Ifo =+1,thenwehavec| € (—2+kj,—k;),and c; € (—2,0) witheitherc, € (=2,¢; — k)
orcp € (Cl —l—kl,O).
e If 0 = —1, then we have either ¢; € (2,00) or ¢; € (—o0,0) with further intervals:
— If ¢ € (k1 +2,00), then either ¢; € (¢; + k1,00) C (2,00) or ¢z € (2,¢1 — ki) C (2,00)
or ¢; € (—00,0).
— If ¢ € (—o0,—ky), then either ¢; € (2,00) or ¢; € (¢; +4;,0) C (—00,0) or ¢; €
(—00,¢1 — ki) C (—00,0).

Finally, we show that the zeros of f and f given by (4.30) are located in the lower and upper
half-planes, respectively, if a; > 0 and 51, > 0. Without the loss of generality, we consider
the zeros of f given by

(1 —iw&) (1+eb879) + i (1—ehé=91) =0,

or equivalently, by

eiliéi—é1 _ @B+ 1—imé
wfin—l+imé’

Denote the root of this equation by x = xg + ix; € C with xg = Re(x) and x; = Im(x). Then,
xr and x; are obtained from

e g—kixi—d1 _ P+ 1+ ax; —icnés
R ~
B —1—apx;+icnéH

where & i = xR — ¢jt —xj, j = 1,2 are real. Taking modulus in the equation yields

(a2fia+ 1+ o)) + o383

e~ k=g — . >2
(a2fi2 — 1 = aoxs)” + 383

19
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o] 1 2 3 4 5 o] 1 2 3 4 5

Figure 3. The Lax spectrum for the breather solutions of figures 4 (left) and 5 (right).

If x; > 0, this equation yields a contradiction since the left-hand side is less than 1 and the
right-hand side is larger than 1, where we recall that ap, >0, 812 > 0, and ¢; > 0. Hence,
x; =Im(x) < 0 for every root of f. O

Remark 8. The last part of the proof of theorem 3 is based on the proof in [14, section 2],
where it was overlooked that if £ has a nonzero imaginary part for the complex root of f,
then &; also has a nonzero imaginary part. However, the same contradiction as in the proof of
theorem 3 can be obtained for the BO equation in [14, section 2].

Remark 9. The value c; in theorem 3 defines an isolated eigenvalue A = —% added to the Lax
spectrum X of the traveling periodic wave in proposition 2. It is surprising that the relation
between the location of the isolated eigenvalue A = —% and the soliton speed c; is exactly
the same as in the case of no traveling periodic wave, see remark 7. The same property is also

observed for the BO equation in [14].

Next we give several examples of the breather solutions.
If o = +1, the two intervals (c; +4;,0) and (—2,¢; —k;) for the wave speed ¢, in
theorem 3 are equivalent to

—%e(mo) and —%e(/\0+k1,1). 4.32)

The Lax spectrum of the corresponding breather solutions include an additional isolated eigen-
value —% € (0,1)\[Ao, Ao + k1] outside the Lax spectrum 3 of the traveling periodic wave
given. The two cases in (4.32) are shown in figure 3 for the particular parameters of figures 4
and 5.

Figures 4 and 5 display the solution surfaces (side view on the left and top view on the
right) for the breather solution of theorem 3 for the two different choices in (4.9) and one
choice in (4.32). The solution surfaces are shown in the reference frame x -+ ¢ relative to the
wave speed being equal to —1. In both cases, we can see that the breather solution represents
the dark solitons over the traveling periodic wave.

Figure 4 is constructed for k; = 0.25, ¢; = —1, and ¢; = —0.5 € (¢1 + k1,0). The travel-
ing periodic wave of proposition 1 is stationary in the reference frame x -+ f, whereas the
dark soliton in the breather solution propagates to the right direction relative to the periodic
wave. Although the dark soliton impairs a phase shift, it is identically equal to the period
of the traveling periodic wave. This property is in agreement with the fact that the limit
& — Foo of the breather solutions of theorem 3 yields the same traveling periodic wave of
proposition 1. If ¢; = —1.5 € (—=2,¢; — k1), then the breather solution is very similar but the
dark soliton moves slowly than the periodic wave (not shown).
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Figure 4. The solution surface of |u|* for the breather versus (x +t,) for ky = 0.25,
c1 = —1, and C) = —0.5.
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Figure 5. The solution surface of |u|* for the breather versus (x4 t,7) for k; = 0.25,
Cc1 = —0.5, and C) = —1.

Figure 5 is constructed for k; = 0.25, ¢; = —0.5, and ¢; = —1 € (—2,¢; — k;). The dark
soliton is stationary in the reference frame x + 7, whereas the traveling periodic wave moves
to the right direction relative to the dark soliton. We can see again that the phase shift of the
breather is equal to the wave period. If c; = —0.15 € (¢; + k1,0), the dark soliton moves faster
than the periodic wave (not shown).

If o = —1and ¢| € (k; +2,00), the three intervals (¢; + k;,00), (2,¢1 — ki), and (—o0,0)
for the wave speed c; are equivalent respectively to

—%2 € (—00,\o) —%2 € (No+ki,—1), and - % €(0,00).  (4.33)
The Lax spectrum of the breather solutions includes an additional eigenvalue —% relative to
the Lax spectrum X = [Ag, Ao + k1] U [—1,00) of the traveling periodic wave. The eigenvalue
—% is isolated in the first two cases of (4.33) and embedded in the third case of (4.33). The
first two cases in (4.33) are shown in figure 6 for the parameters of figures 7 and 8.

Figures 7-9 display the solution surfaces (side view on the left and top view on the right) for

the breather solution of theorem 3 with the three choices for ¢; in (4.33). The solution surfaces
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Figure 6. The Lax spectrum for the breather solutions of figure 7 (left) and figure 8
(right).

60 40 -20 0 20 40 60
xc,t xC,t

Figure 7. The solution surface of |u|* for the breather versus (x — ct,7) for k; = 0.25,
c1 =2+2ki,and o = ¢y + 2k;.

are shown in the reference frame x — ¢, in which the periodic wave of proposition 1 does not
travel in time.

Figure 7 is constructed for k; = 0.25, ¢; =2+ 2ky, and c; = ¢1 +2k; =2+ 4k € (¢1 +
ki1,00). The breather solution has the bright soliton profile propagating to the right relative to
the periodic wave. Figure 8 is constructed for k; =0.25, c; =2+ 2k, and ¢c; = ¢; — %kl =
2+ %kl € (2,¢1 — ky). The breather solution has the dark soliton profile propagating to the
left relative to the periodic wave. In both cases, we can clearly see that the phase shift of the
breather is equal to the wave period of the traveling periodic wave.

Figure 9 is constructed for k; = 0.25, ¢; = 2 + 2k;, and ¢; = —k; € (—00,0). The breather
solution has the bright soliton profile propagatng to the left relative to the periodic wave. The
breather doe not exhibit any phase shift.

If o = —1and ¢| € (—o0, —k;), the periodic wave of proposition 1 travels to the left sym-
metrically relative to the speed 1, as follows from (4.10). The band [, Ao + ;] of the Lax
spectrum is now embedded into the continuous spectrum [—1, 00). The three intervals (2, 00),
(c1 4+ k1,0), and (—o0,c| — k) for the wave speed ¢, are equivalent respectively to

—%26(700,—1), —%6(0,)\0), and —%G(AoJrkl,oo). (4.34)
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Figure 8. The solution surface of \u|2 for the breather versus (x — ci¢,1) for k; = 0.25,
c1=2+2k,andcr = ¢y — %kl.

60 -40 20 0 20 40 60
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Figure 9. The solution surface of |u|* for the breather versus (x — ¢ t,¢) for k; = 0.25,
c1 =2+2kj,and ¢p = —k;.

The Lax spectrum of the breather solution includes an additional eigenvalue —% relative to
the Lax spectrum ¥ = [—1,00) of the traveling periodic wave. The eigenvalue is isolated in
the first case of (4.34) and embedded in the other two cases of (4.34). In both cases of the
embedded eigenvalue — %, it is located outside the spectral band [\, Ao + k1] C [~1,00). In
spite of these differences between isolated and embedded eigenvalues, the breather solutions
for all three cases in (4.34) are very similar to the three cases in (4.33) if they are plotted
in the reference frame x — ¢t and f. The breather solution with ¢, € (2,00) has the bright
soliton profile propagating to the right relative to the periodic wave (not shown). The breather
solution with ¢; € (¢; + k1,0) has the dark soliton profile propagating to the right relative to
the periodic wave (not shown). The breather solution with ¢, € (—oo,c; — k;) has the bright
soliton profile propagating to the left relative to the periodic wave (not shown). The breather
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solutions for (4.34) can be obtained by reflections of the relevant solutions for (4.33) due to
the symmetry between cases ¢ € (—oo,—k;) and ¢; € (2+ k;,00) in (4.10).

4.4. N-breathers on the traveling periodic wave

We obtain a general breather solution of the nonlocal model (2.1) for N solitary waves
propagating on the background of the traveling periodic wave (4.4) and (4.5). To do so, we
use the explicit formulas for the (N + 1)-periodic wave solution obtained in [39]. The solution
is written in the bilinear form (4.2) with the following functions:

f=detF, f=detF, g=n~detG, §=~""detG, (4.35)

where matrices  F = (fiisvtt, F=(fiigusvi, 6= (gigisytr, and G =
(8i1)1<j1<n+1 are given by

N+1

i = ]:jeXp ki) — ¢ + ;S_IX;#Ajs O + cj—clikj—{—k[
B 1 1 N+1 2
fi= 5 exp | ik& + ¢+ 5 Y;#Ajs op + G—atkthk
N+1
it = l:jexp ik — 1+ ;S_IX;#A,-S o + Cjclikj+kl7
1 N+1 2
8 = i, &P k& + v + 5 le;#Ajs O+ P —

with the parameters given by §; = x — ¢;t — x; with arbitrary x; € R, sgn(¢;) = sgn(k;),
2 _ (G k) (G+k+20) 4 Gtk
(¢ +k) (¢j —kj+20) ¢ =k
2 2
—a, _ lci—¢)" — (ki +k)

e?, 1<j<N+1, (4.36)

S , 1<i#j<N+1, (437
(ci— e — (ki —k)? 7
and
N+1
v =exp 52@,—@) . (4.38)

j=1

We take the limit k; — 0 for 2 < j <N+ 1. It follows from (4.36) and (4.37) that

k: 1+ocj)k; .
s=Yr0m@), u=-UT"9% 0@y <Nt
Ozj aj
and
ef%Al,lefﬂljlchro(k]?)? 2<j<N+1, (4.39)
2k; ki
e*%AI:lef(i’z+O(k,2k,2), 2<ij <N+, (4.40)
Ci Gy '
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where

O'Cj (Cj+2(7) 2k1

aj=——LL T = 2 <NHL
' GRS

2

We multiply the first row of matrices F, F, G, and G by k; and the remaining rows of these
matrices by ay,---,ay41. The solution u given by (4.2) and (4.35) is not affected by this

transformation. Denoting the resulting matrices as F R F R G, and G, and taking the limit as
ki — 0for2 <j < N+ 1, we obtain

1+ ezikl& 1 | 7ickzl+k1 o Cl*c;’ﬁ
| wew f2oooEem | (4.41)
FeT ame 0 v
1+eik|§1+¢1 m—iﬁ %
| mewm P2 SHS , (4.42)
_ 20N 1 2ompt er+lN+1
N+1—C1+ki CN41—C2
1+ e;kl& ¥ | *fCI;IJrkl o 6176212\’%
A B | (4.43)
choﬁV:': ]-‘rkl Lf]if’tiz GN+1N+I
and
1+ elki&i+ 01—ii]+k1 .. %
é = cz—2§:2+k1 G o CZEC;;'H , (4.44)
m-ioﬁvétl-l-kl CI?/-(I-IINi]c2 o GN+1N+]
where

>

o; (i&+pyy) +1,

&

184

>

_]7
i Oéj —O'Cj—l,

i&§+ B
i =~ (& +By) +oci+ 1,

»

= —a;( )

i =~ (& + Byj)
= —a;( )
= —a;(

for 2 <j < N+ 1. The general N-breather solution is obtained in the determinant form:

tG detF
=@ G oD g 9 (4.45)
detF Ox  detF

where F and G are given by (4.41) and (4.43), with

_ %(¢l_w]): Cl"‘kl
nee Ve —ki
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obtained from (4.38). Determinants of matrices }:7 and G obtained from (4.42) and (4.44) are
related to the complex-cojugate versions of determinants of matrices F and G. If N =1, then
the solution (4.45) recovers the breather solution of theorem 3.

Remark 10. Zeros of f and f for every ki, kp,...,kyy1 # 0 are located in the lower and upper
halves of the complex plane of x, respectively, due to [18, lemma 1.1]. The rigorous proof that
the zeros of detF and det F in (4.45) obtained in the limit ka,...,kys+1 — 0 are also located in
the lower and upper halves of the complex plane of x is left open for N > 2.

5. Traveling periodic waves and breathers on the zero background

Here we follow the structure of section 4 but consider the traveling periodic waves at the
zero background. The solutions of the nonlocal model (2.1) on the zero background are only
meaningful in the case of 0 = —1, hence we take 0 = —1 in what follows, see remark 11.

5.1 Traveling periodic waves

Assume that f and f have only zeros in the lower and upper half of the complex plane of x,
respectively. Modifying (4.2) with

u=% a=% | |2=i21nf, (5.1)
f f ox f
we transform the nonlocal model (2.1) with o = —1 into the following system of bilinear
equations:
(iD,+D?%)f-g=0,
(—iDi+D?)f-g=0, (5.2)

iD:f-f-8-8=0,
which replaces the system (4.3). The following proposition states the existence of the traveling
periodic waves.

Proposition 3. The nonlocal model (2.1) with 0 = —1 admits the traveling periodic wave in
the form
iki§1—¢1 ky sinh ¢
Y€ 2 181N 1
u(x’ ) 1 + etki&i—¢1’ |u(x’ )| cosk &y + cosh ’ (5-3)
with & =x—cit —xy, ¢| = —ky, and v; = \/k| (2 — 1), where ky >0, ¢; >0, and x; € R

are arbitrary parameters.

Proof. Let us consider the following solution of the bilinear equation (5.2):
f=1+ eiklﬁl*(bl7 ]?: 1+ eik1§1+¢1’
g:,}/leiklél*qf)]7 g=m,

where & = x — ¢t — x|, with some parameters k; € R, ¢; € R, ¢; € R, x; € R, and v, € R.
The bilinear equation (5.2) are satisfied if and only if

Clz—kl, ’}/12:](1 (62¢'—1).

(5.4)

Without loss of generality, we can consider k; > 0, hence ¢; > 0 from requirement that f and
f admit zeros only in the lower and upper half-planes, respectively. Since 77 > 0, then v, € R
and u = % is complex conjugate of u = f; O
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Figure 10. The profile of |u\2 versus x for o = —1, k; = 0.25, and either ¢; =1 (left)
or ¢1 = 0.5 (right).

Remark 11. The traveling periodic waves on the zero background are not admissible in the
nonlocal model (2.1) with o = +1 because 77 < 0, which results iny; € iR and |u(x,)|*> < 0.

Remark 12. Without the loss of generality, one can set k; = 1 due to the scaling transforma-
tion (2.4). We will keep k; > 0 as a free parameter for clarity of notations.

Figure 10 displays the spatial profile of the traveling periodic waves given by (5.3) for
ki = 0.25 and two choices of ¢,. The wave with smaller ¢; has larger maxima and smaller
minima for |u|? given by

ki sinh ¢, ®1
max =kjcoth | —
&1€R coski &y + cosh gy 2

and

ki sinh ¢, = k; tanh (él>
5 )

min
&1€R cosk &) + cosh ¢

The period of the traveling periodic wave is i—’:

The long-wave limit of the periodic wave (5.3) appears as k; — 0, where the periodic wave
transforms into a solitary wave. As k; — 0, the nontrivial limit exists in (5.3) if and only if ¢; =
ayk; — 0 with arbitrary a; > 0. We obtain from (5.3) after the transformation x; — x; 4+ 7 /k;

in the limit k; — O that

vV 2041

i(x—x1)—

2041

, ux )= ———.
a%+(x—x1)2

u(x,t) = (5.5)

The solution (5.5) represents the bright soliton with the profile decaying to zero at infinity. The
arbitrary parameter o; > 0 can be normalized to unity due to the scaling transformation (2.4).
Variational characterization of the soliton solution (5.5) has been studied in [28].

27



Nonlinearity 38 (2025) 075016 J Chen and D E Pelinovsky

5.2. Lax spectrum of the traveling periodic wave

To obtain the exact solutions of the linear system (2.5) with o = —1, we use the representa-
tions (4.13) and (5.1). The system of bilinear equatons (4.14) remains the same and we rewrite
this system for 0 = —1 as

(iDy+A) g -f+g-h=0,
h-f—ph-f—¢-g=0,
(iDi+ X))@ - f+(iDi+ M) h-g =0, (5.6)
(iD;—2iAD,+D2)h-f =0,
(iD;—2iAD,+ D) h-f=0.
The following proposition describes the Lax spectrum for the traveling periodic wave with the
spatial profile (5.3) based on the exact solutions of the system (5.6).

Proposition 4. Let u be the traveling periodic wave in proposition 3. The Lax spectrum ¥ in
definition 1 consists of two bands [0,k] and [0,00), where [0,k;] is embedded into [0,00).

Proof. We proceed differently for g~ =0and g~ # 0.
If g~ =0, then & = 0. The second solution of system (5.6) implies that
h=28
f

Since g7 = p is analytic in C then £ is required to be analytic in C.. Since f admits zeros
in C, then ¢ must be divisible by f'so that

© =mf, h=mg, (5.7)

with some m = m(x,) to be determined (required to be analytic in C).
From the first equation of system (5.6) we find with the help of the third equaton of
system (5.2) that

imy+ Am=0. (5.8)
From the third equation of system (5.6), we obtain with the help of (5.8) that
(ime+Nm)f-f+im(Dif-f+ D& g) =0,
which together with (5.4) results in
im;+ Xm =0. (5.9)
From the fourth equation of system (5.6) and (5.4), we obtain
(im, — 2i Ay +my) £+ m (—if, + 2i My + fra) — 2mfi = 0,
which is satisfied due to (5.4), (5.8), and (5.9). Solving (5.8) and (5.9) yields
m(x,f) = eiAeri)\?z7

with the constant of integration normalized to unity. By using (4.13) and (5.7), we obtain the
exact expression for the components p and ¢* of the eigenfunctions with ¢~ = 0:

k1 €1+ o ei)\x+i/\2t

+
q" = T (5.10)
The component g™ is analytic in C; and bounded as Im(x) — +oo for every ¢ € R if and only
if A > 0. Hence, [0, 00) belongs to the Lax spectrum X.

_ a1 te

p 1 4+ eiki&i—¢1’
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If g~ #0, then we obtain solutions for /# and h by using the last two equations of sys-
tem (5.6). Given f in (5.4), we separate the variables in the form

h— ei(@&l-‘rﬂt) (1 +Aeik1§1—¢>1) ,

with some 6, €2, and A to be determined. The fourth equation in system (5.6) is satisfied if and
only if

A—0
Q=02Xx—-0—k d A=———
( 1) an =0k
which yields the explicit solution
A A—0 .
h = elf(&+(2A=0-k)1) (1 + /\_e_lqelklfl—tb]) ) (5.11)

With similar computations from the fifth equation in system (5.6), we obtain the explicit
solution

A—0

ﬁ — i0(€1+(2>\797k1)[) 1
¢ R s

éMﬁ@), (5.12)

where parameter 6 € R has to be the same due to the coupling between 4 and h in the second
equation of system (5.6). Now g™ and ¢~ are analytic and bounded in C; and C_ respectively
if and only if @ = 0. This yields the unique representation of the components g and g~ in the
form

1 A
+ _ iki§1—¢

and

1

- _ A iki&1+¢
9 = {iohata {1+/\_kle 1STen) (5.14)

We note from (5.13) and (5.14) that qjE are analytic and bounded in C. according to
definition 1 since k; > 0 and ¢; > 0.

It remains to find a bounded function p from the first three equations of system (5.6).
Resorting to the second equations (5.6) and (5.4), we arrive at

wz%(ﬁ—ﬂ@- (5.15)

Substituting (5.4), (5.11), (5.12), and (5.15), with 8 =0 into the first equation of (5.6), we
obtain

_—— 2ki (p—1)  A(1—2p) _ A7 i
1— 3iki§1—1 1 1 2¢1 _ 2ik1&
Al—p)e + A1+ - + - +e s wlle
+ [k v 20 (1= ) + €2 (A (1= p) —kp)] X979 £ X (1 — ) =0.

This relation is satisfied if and only if ;= 1. By using (5.15), we obtain

o = _)\’ylk eik1&1—¢ (5.16)
— K1
and
" elki&i—¢1

Y E T (5.17)

p:
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Finally, we have confirmed that the third equation is satisfied by using (5.4), (5.11) with § =0,
and (5.16). The periodic function ¢~ in (5.14) has zero mean value at A = 0. Hence the band
[0,k;] belongs to the Lax spectrum X. O

Remark 13. It follows from (5.10) and (5.17) that p is analytic and bounded in C_.. We note
again that although this was not a requirement on solutions of the linear system (2.5), this
property follows from the fact that the spatial profile # in (5.3) is analytic in C, see also
remark 6.

Remark 14. The band [0, k] of proposition 4 can be formally obtained from the band [Ag, Ao +
k1] of proposition 2 in (4.15) since Ao = —C'J{k' =0 if ¢; = —k;. The other band [0,00) of
proposition 4 is a shifted version of the band [—1,00) in (4.15) due to the change from a
nonzero to zero background.

Remark 15. The Lax spectrum of the algebraic soliton (5.5) is found in the limit k; — O of
proposition 4. It consists of the spectral band [0, 00) and a simple embedded eigenvalue at 0,
which is the end point of the continuous spectrum.

5.3. Breathers on the traveling periodic wave

To obtain a solitary wave on the background of the traveling periodic wave (5.3), we first
construct the double-periodic wave solution from the bilinear equations (5.2). The following
theorem gives the most general double-periodic solution, where we have verified consistency
of the assumptions on f and f to have only zeros in the lower and upper halves of the complex
plane of x, respectively.

Theorem 4. The nonlocal model (2.1) with 0 = —1 admits two families of the double-periodic
wave solution expressed by the representation (5.1) with

f =1+ eiklél_(bl_%A]Z + eikzéz—%Alz + eiklfl—(bl-‘riszz7
f =1+ eik1€|+¢1—%A|2 + eikzﬁz—%Alz + ei/<1§1-‘r<l5|-‘riszz7
g = {eiklsl—@ ~ian 4 a2eiklsl—¢.+iszz} 7 (5.18)

g =mm [eimz_%A” + 042} ,

where § = x — c¢jt — x; with arbitrary x; € R, k1 >0, ¢1 >0, ¢y = —ky, kr #0,

0 — ko oA (C] 7C2)2 - (k] Jrkz)z . (Cz 7]{2) (Cz + 2k, Jrkz)

(6%)

otk (c1—c)’ — (ki —ky)*  (c2+k)(c2+2ki — k)’
and
2 26, etk
=k -1 .
T2 =K1 (e ) e —ky

The two families are defined by the two intervals for the speed cy: either c; € (|k|,00) or
C € (—OO,—VQ‘ — 2](1)

Proof. We have verified validity of the explicit expression (5.18) by substituting them into
the bilinear equation (5.2). The complex conjugate symmetry between u and « in (5.1) holds
if and only if 7122 > 0. This corresponds to a; > 0 since k; > 0 and ¢; > 0. Therefore, either
Ccy > ‘k2| or ¢ < —|k2|.
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Next we prove that zeros of f and fare located in the lower and upper halves of the complex
plane of x, respectively, if
(c1 —2)* > (ki + Jkal)?,
for k; > 0 and k; # 0. Since ¢; = —k;, this constraint is rewritten as
(6'2 — |k2|) (C2 + |k2| +2k1) >0,
hence it provides further restrictions on the speed c;: either c¢; € (|kz|,00) or ¢; €
(—o0, —|ka| — 2k1).
In order to consider zeros of f, we note that e =412 — 1 if k; — 0 or k, — 0 which yields the
factorization formula:

f= (14+eR879) (1 4e02)  as e™r 1.

Zeros of the factorization for f correspond to either Im&; = — ¢, /k; < 0 or Im&; = 0. The first
set is already in the lower half-plane. To prove that the second set moves to the lower half-
plane for small k; > 0 and k;, # 0, we compute the perturbation terms beyond the factorization
formula. The first-order Taylor expansion of f in variable k; is as follows:

F= (e ) (1+eh8) £k [ige? (14 eh&) - 22k2

_T (o ik & 2
g ) 1O ().

Let & = (2n+ 1) /ky be a simple zero of (1 +e~?1)(1 +e*%) =0 for n € Z so that

Oerf =iky (1+e7) e 40 (k)
=—iky (1+e ")+ O (k) #0.

By using the implicit function theorem, we obtain the root of f =0 for small k; > 0 as

2ik; (1—e*1)
3—k)(1+e %)
Since (c2 — k2) = ca(ca +k2) and aa > 0, then ¢ — k3 > 0. Since k; > 0 and ¢; > 0, we con-
clude that Im(&,) < O for every n € Z, hence all roots of f are the lower half-plane for small
ky > 0 and fixed k, # 0.

Let us now show that the zeros of f do not cross the real axis for arbitrary k; > 0 and k, # 0.
If f=0and &,& € R, then we have the system

+0O (k) as ky —0.

52250_(

[ 4+e=b1—34n coski& +e” 2An coska&r +e~?1cos (k&) + k&) =0,
e~ 1A gink £ + e 24 sinky&y 4+ e~ P sin (ki€ 4 ko) = 0.

By using

k& = ki& -2Hc2€2 n ki& ;kzﬁz7 oy = ki& —2H<2§2 k& ;kzﬁz

and trigonometric identities for addition/subtraction formulas, we rewrite the system in the
equivalent form:
1 iy 1 — 1
cos 5 (k1&1 + ka&s) + e~ 242 cos 5 (k1§ —ko&a) | (=% 4 1) cos 3 (k&1 + k&)

o1 1 ! _ 1
- [sz (k1€ + ko) +e7 240 ) (k1 &1 kzﬁz)] (e —1) ) (k1& + k&) =0,
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{Sini (ki1 + k&) +67%A”Sin% (k1§ —kzﬁz)] (e — I)COS% (k1&1 + k262)

1 1 1
* [COS 2 (ki€ + ko&2) +e~ 242 cos 2 (k&1 — szz)] (7 +1)sin D) (k1§ + k&) = 0.

Since ¢; > 0, eliminating cos %(lq& + k&) and sin % (k1&1 + kx&,) yields the equivalent sys-
tem of equations:

{cos ki1 + ko) +e 412 cos L (ki€ — szg)} =0,
{sin% (ki&1 + ko) +e A2 sin L (k&) — szz)} =0,
which can be rewritten further as
(1 + e_%A‘Z) cos 2ki & cos k& — (1 - e_%A‘z) sin 11 sin$k&s =0,

(5.19)
(1 +67%A12) sin 1k &) cos 1ho&s + (1 - e*%fhz) cos 1k & sin a6, = 0.

The determinant of coefficients for cos %kzgz and sin %szz in (5.19) is equal to £;-independent
quantity
A _ 4k ky

(Cz Jrkz) (Cz —ky +2k1) ’

which is nonzero and bounded if k; > 0, k, # 0 and either ¢, € (|k2|,00) or ¢z € (—o0, —|ka| —
2k;). Hence, no zeros of f cross the real line for arbitrary k; > 0 and k, # 0, and, since they are
in the lower half-plane for small k; > 0 and fixed k, # 0, they remain in the lower half-plane
for every k; > 0 and k, # 0. O

1—e

Remark 16. The N-periodic solution of the nonlocal model (2.1) with o = —1 was recently
obtained in [43, theorem 1]. However, the parameter restriction in equation (14) of [43],

G1<0=p1<@2<p2<...<gn<pw (5.20)

only recovers the family of solutions in our theorem 4 with ¢; € (|kz|,00). The other family of
solutions with ¢, € (—oo, —|ka| — 2k} ) is recovered from the alternative parameter restriction

PN<GN< ...<p2<qr<q1 <0=py. (5.21)

The location of zeros of f in the lower half-plane of x was proven in [43, proposition 2] for
the parameter restriction (5.20). One can show that the same proof can be extended for the
parameter restriction (5.21). In theorem 4, we gave an alternative proof of the location of
zeros of f in the lower half-plane of x, which works for both families of solutions but only in
the case of N =2.

Each family of the double-periodic waves in theorem 4 generates only one family of breath-
ers on the background of the traveling periodic wave of proposition 3 in the limit k, — 0,
according to the following corollary.

Corollary 2. The nonlocal model (2.1) with o = —1 admits two families of breather solutions
on the traveling periodic wave (5.3). The solutions exist in the form (5.1) with

f=PBn (1 _ eik1§1*¢1) —i& (1 +eik1§1*¢1) ,
f~: B2 (1 _ eik1£1+¢1) —i& (1 _|_eik1§1+¢1) ,
g="eM87% (x1, —i&),
g=m(—x12—1i&),

(5.22)
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where {; = x — cjt — x; with arbitrary x; € R, ky >0, ¢ >0, c; = —kj,

2k, 2(6‘2 +k1)
— >0, and = —
c2(c2+2ky) X2 c2(c2+2ky)

The two families are defined by the two intervals: either ¢; € (0,00) or ¢z € (—o0,—2k;).

=k (" =1)>0, Bp=

Proof. We obtain in the long-wave limit k; — O that

_ 2k —Ap _ 4k1ky
=1 o +O(k§), e =1 cz(cz+2k1)+0(k%)'

Hence e~ 242 =1 — Biaks + (’)(k%). The expressions (5.22) are obtained from (5.18) at the
order of O(k;) after the transformation x, — x, + 7 /k;. The two families of double-periodic
waves in theorem 4 give the two families of breathers with either ¢, € (0,00) or ¢; €
(—00, —2k;) for which 31, > 0.

Next we prove that the zeros of f andfare located in the lower and upper half-planes,
respectively, for either ¢; € (0,00) or ¢; € (—o0, —2k;). Setting f =0 in (5.22) yields

ciki&i—d1 _ B2 —lfz'
B2 +i&
Similarly to the proof of theorem 3, we denote the root of this equation by x = xg +ix; € C
with xg = Re(x) and x; = Im(x). Then, xg and x, are obtained from
gikifig—hn—or _ Pt x—ig

Bia—xs+ify

where éj = xR — ¢jt — xj, j = 1,2 are real. Taking modulus in the equation yields

(Br2 +XJ)2 + 8

—kixj—¢1 _
e = P
(Bra—x5)" + &5
If x; > 0, this equation yields a contradiction since the left-hand side is less than 1 for k;, ¢; > 0
and the right-hand side is larger than 1 for 51, > 0. Hence, x; = Im(x) < O for every root of f.

O

Remark 17. The intervals (0,00) and (—oo, —2k;) for parameter c; are equivalent to

—%2 €(—00,0) and — % € (ky,00).

The Lax spectrum of the corresponding breather solutions include an additional eigenvalue
—£ outside the band [0, k] in the Lax spectrum ¥ in proposition 4. However, there are dif-
ferences between these two cases. For ¢, € (0,00), the new eigenvalue is isolated from X and
for ¢; € (—o0, —2k;), the new eigenvalue is embedded into X\ [0,k ].

Figures 11 and 12 display the solution surfaces (side view on the left and top view on
the right) for the breather solution of corollary 2 with two choices for ¢, versus the original
variables (x, t). For ky = 0.25, ¢1 =1, and ¢c; = k; € (0,00) on figure 11, the breather solution
has the bright soliton profile propagating to the right of the periodic wave traveling to the left.
For k; =0.25, ¢1 =1, and ¢, = —3k; € (—o0,—2k;) on figure 12, the breather solution has
the bright soliton profile propagating to the left faster than the periodic wave. In both cases,
no phase shift appears after the bright soliton passes the traveling periodic wave.
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Figure 11. The solution surface of |u\2 for the breather versus (x, ) for k; = 0.25, ¢; =1,
Cc1 = —k1, and 2 :k1.
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Figure 12. The solution surface of |u|2 for the breather versus (x, 7) fork; = 0.25, ¢; =1,
Cc1 = —k], and C) = —3k1.

5.4. N-breathers on the traveling periodic wave

We obtain a general breather solution of the nonlocal model (2.1) with ¢ = —1 for N solitary
waves propagating on the background of the traveling periodic wave (5.3). To do so, we use
the explicit formulas for the (N + 1)-periodic wave solution obtained in [43] but extend the
choices for {ky,...,kn+1} and {cz,...,cy+1} in a more general setting as in theorem 4.

The (N + 1)-periodic wave solution is given by

g s o, f
= — 2—_— : ] — =
u 7 |ul E ki +1i xlnf (5.23)

Jj=1
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with
f=det(F),  g=rdet(G),

where F = (f/ )1§j,l<N+l and G = (gﬂ)lgj’lgNaH are giVCH by

1 1 N+1 )
f)l kj P /5/ (bj 2 kTR g |t Ci—C + kj + kl

and

k=T k]
Jit: 1<j<N+1, 2<I<N+1,

N+1
g = Aexp(i/ﬂ&—(lﬂ%—; > Ajk>, I1<j<N+1, [=1,
i =

with & = x — ¢jt — x; for arbitrary x; € R, with k; > 0, ¢1 > 0, ¢; = —ky and k; # 0, ¢; = 0 for
2 <j <N+ 1, and with

N+1c~ k
2 _ 2¢1 _ J N
v =k (7 UIIQ+@
j=2

and

e i = L 1<i#j<N+1.

The admissible intervals for ¢;, 2 < j < N+ 1 are given by ¢; € (|k;],00) or ¢j € (—o0, —|kj| —
2k;) for 2 <j < N+ 1. In addition, we have
(ci =) > (il +1k1)?,  2<ij SN+1.

We take the limit k; — 0 for 2 <j <N+ 1 and use the expansions (4.39) and (4.40) again

with
2k, B 2k,

(Cl 7Cj)27k% Cj (C]+2k1)
Multiplying the first row of F and the first column of G by k; and taking the limit, we denote
the resulting matrices as F and G and obtain them in the form:

> 0.

Bij=

We—o 2k o
l+e , - G
P PR —i& — P2 o 520
2 2 .
en+1+2k CN+1—C2 lgN—H ﬂIN—H
and
elki&i—¢1 _2 . __2
ik1€1—¢ “ g
1K1§1— @1 7 _
. e i& — P2 e
G= . (5.25)
ik1§1— 2 . .
€ CN41—C2 l€N+1 51N+1
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The general N-breather solution is obtained from (5.23) in the closed determinant form

detG det
U= a2l = —ky i In e, (5.26)
detF detF
where 712 = ki (e**" — 1), whereas F and G are given by (5.24) and (5.25). The wave speeds
satisfy either ¢; € (0,00) or ¢; € (—o0,—2k;) for 2 <j < N+ 1. In particular, if N =1, then
the solution (5.26) with (5.24) and (5.25) recovers the breather (5.22) in corollary 2.

Remark 18. Zeros of f and ffor every ki, ky, ..., kyy1 # O are located in the lower and upper
halves of the complex plane of x, respectively, due to [43, proposition 2] and its extension,
see remark 16. The rigorous proof that zeros of det F and det F in (5.26) obtained in the limit
ka,...,kns1 — O are also located in the lower and upper halves of the complex plane of x is
left open for N > 2, see also remark 10.

6. Conclusion

We have studied the nonlocal derivative NLS equation, a new emerging model for deep fluids
to describe modulations of wave packets and the continuum limit in the dynamics of particles.
For the defocusing version of this nonlocal model, we proved the linear stability of the nonzero
constant background for decaying and periodic perturbations and the nonlinear stability for
periodic perturbations. For the focusing version, we proved the linear stability under a non-
resonance condition on the initial data and the nonlinear stability for sufficiently small periods.

We have systematically studied the traveling periodic waves, their Lax spectrum, and the
existence of breathers propagating on the background of the traveling periodic waves. In the
defocusing case, there is only one family of traveling periodic waves on the nonzero constant
background and we have shown existence of exactly two families of single breathers, both have
the dark (depression) profiles. In the focusing case, there are two families of traveling periodic
waves on the nonzero constant background, each admits three families of single breathers, two
of which have the bright (elevation) profiles and one has the dark (depression) profile. Also
in the focusing case, there is only one family of traveling periodic waves on the zero back-
ground and two families of single breathers, both have the bright (elevation) profiles. We have
related the existence of breathers with the bands of the Lax spectrum for the traveling periodic
waves. Surprisingly, breathers associated with either isolated or embedded eigenvalues in the
Lax spectrum feature the same dynamics. Multi-breather solutions are obtained in the closed
determinant form.

We conclude by formulating further questions related to this study which can be considered
in near future.

(1) Can the nonlinear stability or instability of the nonzero constant background be proven in
the focusing case for sufficiently large periods? What is the long-term dynamics of the lin-
early (algebraically) growing periodic perturbations at the resonance due to the nonlinear
effects?

(2) Do there exist any exact solutions describing nonlinear instability of the traveling periodic
waves in the focusing case? On comparison with the focusing cubic NLS equation with the
modulational instability of the traveling periodic waves and the rogue waves on their back-
ground, dynamics in the nonlocal derivative NLS equation does not show any instability
or rogue wave phenomena in the class of exact solutions considered in our work.

(3) Dynamics of the breathers on the traveling periodic waves would naturally appear in the
semi-classical limit from initial data with different boundary conditions at infinities. The
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dispersive hydrodynamics for the nonlocal derivative NLS equation in the focusing case is
open for further studies, see [41] for Whitham’s modulation theory in the defocusing case.
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