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1 Introduction

The massive Thirring model (MTM) was derived by Thirring in 1958 [33] in
the context of general relativity. It represents a relativistically invariant nonlinear
Dirac equation in the space of one dimension. Another relativistically invariant one-
dimensional Dirac equation is given by the Gross–Neveu model [12] also known as
the massive Soler model [32] when it is written in the space of three dimensions.

It was discovered in 1970s by Mikhailov [24], Kuznetsov and Mikhailov [21],
Orfanidis [25], Kaup and Newell [18] that the MTM is integrable with the inverse
scattering transform method in the sense that it admits a Lax pair, countably many
conserved quantities, the Bäcklund transformation, and other common features of
integrable models. We write the MTM system in the laboratory coordinates by using
the normalized form: {

i(ut + ux)+ v + |v|2u = 0,
i(vt − vx)+ u+ |u|2v = 0.

(1.1)

The MTM system (1.1) appears as the compatibility condition in the Lax represen-
tation

Lt − Ax + [L,A] = 0, (1.2)
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where the 2 × 2-matrices L and A are given by

L = i
4
(|u|2 − |v|2)σ3 − iλ

2

(
0 v
v 0

)
+ i

2λ

(
0 u
u 0

)
+ i

4

(
λ2 − 1

λ2

)
σ3 (1.3)

and

A = − i
4
(|u|2 + |v|2)σ3 − iλ

2

(
0 v
v 0

)
− i

2λ

(
0 u
u 0

)
+ i

4

(
λ2 + 1

λ2

)
σ3. (1.4)

Other forms of L and A with nonzero trace have also been introduced by
Barashenkov and Getmanov [1]. The traceless representation of L and A in (1.3)
and (1.4) is more useful for inverse scattering.

Formal inverse scattering results for the linear operators (1.3) and (1.4) can be
found in [21]. The first steps towards rigorous developments of the inverse scattering
transform for the MTM system (1.1) were made in 1990s by Villarroel [34] and
Zhou [38]. In the former work, the treatment of the Riemann–Hilbert problems
is sketchy, whereas in the latter work, an abstract method to solve Riemann–
Hilbert problems with rational spectral dependence is developed with applications
to the sine-Gordon equation in the laboratory coordinates. Although the MTM
system (1.1) does not appear in the list of examples in [38], one can show that
the abstract method of Zhou is also applicable to the MTM system.

The present paper relies on recent progress in the inverse scattering transform
method for the derivative NLS equation [27, 29]. The key element of our technique
is a transformation of the spectral plane λ for the operator L in (1.3) to the spectral
plane z = λ2 for a different spectral problem. This transformation can be performed
uniformly in the λ plane for the Kaup–Newell spectral problem related to the
derivative NLS equation [19]. In the contrast, one needs to consider separately the
subsets of the λ plane near the origin and near infinity for the operator L in (1.3)
due to its rational dependence on λ. Therefore, two Riemann–Hilbert problems are
derived for the MTM system (1.1) with the components (u, v): the one near λ = 0
recovers u and the other one near λ = ∞ recovers v.

Let L̇2,m(R) denote the space of square integrable functions with the weight |x|m
for m ∈ Z so that L2,m(R) ≡ L̇2,m(R) ∩ L2(R). Let Ḣ n,m(R) denote the Sobolev
space of functions, the n-th derivative of which is square integrable with the weight
|x|m for n ∈ N and m ∈ Z so that Hn,m(R) ≡ Ḣ n,m(R) ∩ L̇2,m(R) ∩ Hn(R) with
Hn(R) ≡ Ḣ n(R) ∩ L2(R). Norms on any of these spaces are introduced according
to the standard convention.

The inverse scattering transform for the linear operators (1.3) and (1.4) can be
controlled when the potential (u, v) belongs to the function space

X(u,v) := H 2(R) ∩H 1,1(R). (1.5)

Transformations of the spectral plane employed here allow us to give a sharp
requirement on the L2-based Hilbert spaces, for which the Riemann–Hilbert
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problem can be solved by using the technique from Deift and Zhou [11, 37]. Note
that both the direct and inverse scattering transforms for the NLS equation are solved
in function space H 1(R)∩L2,1(R), which is denoted by the same symbol H 1,1(R)

in the previous works [11, 37]. Compared to this space, the reflection coefficients
(r+, r−) introduced in our paper for the linear operators (1.3) and (1.4) belong to
the function space

X(r+,r−) := Ḣ 1(R \[−1, 1]) ∩ Ḣ 1,1([−1, 1]) ∩ L̇2,1(R) ∩ L̇2,−2(R). (1.6)

In the application of the inverse scattering transform to the derivative NLS
equation, alternative methods were recently developed [16, 22] based on a differ-
ent (gauge) transformation of the Kaup–Newell spectral problem to the spectral
problem for the Gerdjikov–Ivanov equation. Both the potentials and the reflection
coefficients were controlled in the same function space H 2(R) ∩ L2,2(R) [16, 22].
These function spaces are more restrictive compared to the function spaces for the
potential and the reflection coefficients used in [27, 29].

Unlike the recent literature on the derivative NLS equation, our interest to the
inverse scattering for the MTM system (1.1) is not related to the well-posedness
problems. Indeed, the local and global existence of solutions to the Cauchy problem
for the MTM system (1.1) in the L2-based Sobolev spaces Hm(R), m ∈ N can be
proven with the standard contraction and energy methods, see review of literature in
[26]. Low regularity solutions in L2(R) were already obtained for the MTM system
by Selberg and Tesfahun [31], Candy [5], Huh [13–15], and Zhang [35, 36]. The
well-posedness results can be formulated as follows.

Theorem 1 ([5, 15]) For every (u0, v0) ∈ Hm(R), m ∈ N, there exists a unique
global solution (u, v) ∈ C(R,Hm(R)) such that (u, v)|t=0 = (u0, v0) and the
solution (u, v) depends continuously on the initial data (u0, v0). Moreover, for
every (u0, v0) ∈ L2(R), there exists a global solution (u, v) ∈ C(R, L2(R)) such
that (u, v)|t=0 = (u0, v0). The solution (u, v) is unique in a certain subspace of
C(R, L2(R)) and it depends continuously on the initial data (u0, v0).

The inverse scattering transform and the reconstruction formulas for the global
solutions (u, v) to the MTM system (1.1) can be used to solve other interesting
analytical problems such as long-range scattering to zero [6], orbital and asymptotic
stability of the Dirac solitons [9, 28], and an analytical proof of the soliton resolution
conjecture. Similar questions have been recently addressed in the context of the
cubic NLS equation [8, 10, 30] and the derivative NLS equation [17, 23].

The goal of our paper is to explain how the inverse scattering transform for the
linear operators (1.3) and (1.4) can be developed by using the Riemann–Hilbert
problem. For simplicity of presentation, we assume that the initial data to the MTM
system (1.1) admit no eigenvalues and resonances in the sense of Definition 1
given in Sect. 3. Note that eigenvalues can be easily added by using Bäcklund
transformation for the MTM system [9], whereas resonances can be removed by
perturbations of initial data [3] (see relevant results in [27]). The following theorem
represents the main result of this paper.
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Theorem 2 For every (u0, v0) ∈ X(u,v) admitting no eigenvalues or resonances in
the sense of Definition 1, there is a direct scattering transform with the spectral data
(r+, r−) defined in X(r+,r−). The unique solution (u, v) ∈ C(R, X(u,v)) to the MTM
system (1.1) can be uniquely recovered by means of the inverse scattering transform
for every t ∈ R.

The paper is organized as follows. Section 2 describes Jost functions obtained
after two transformations of the differential operator L given by (1.3). Section 3
is used to set up scattering coefficients (r+, r−) and to introduce the scattering
relations between the Jost functions. Section 4 explains how the Riemann–Hilbert
problems can be solved and how the potentials (u, v) can be recovered in the time
evolution of the MTM system (1.1). Section 5 concludes the paper with a review of
open questions.

2 Jost Functions

The linear operator L in (1.3) can be rewritten in the form:

L = Q(λ; u, v)+ i
4

(
λ2 − 1

λ2

)
σ3,

where

Q(λ; u, v) = i
4
(|u|2 − |v|2)σ3 − iλ

2

(
0 v
v 0

)
+ i

2λ

(
0 u
u 0

)
.

Here we freeze the time variable t and drop it from the list of arguments. Assuming
fast decay of (u, v) to (0, 0) as |x| → ∞, solutions to the spectral problem

ψx = Lψ (2.1)

can be defined by the following asymptotic behavior:

ψ
(−)
1 (x; λ) ∼

(
1
0

)
eix(λ

2−λ−2)/4, ψ
(−)
2 (x; λ) ∼

(
0
1

)
e−ix(λ2−λ−2)/4 as x →−∞

and

ψ
(+)
1 (x; λ) ∼

(
1
0

)
eix(λ

2−λ−2)/4, ψ
(+)
2 (x; λ) ∼

(
0
1

)
e−ix(λ2−λ−2)/4 as x →+∞.

The normalized Jost functions

ϕ±(x; λ) = ψ(±)1 (x; λ)e−ix(λ
2−λ−2)/4, φ±(x; λ) = ψ(±)2 (x; λ)eix(λ

2−λ−2)/4 (2.2)
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satisfy the constant boundary conditions at infinity:

lim
x→±∞ϕ±(x; λ) = e1 and lim

x→±∞φ±(x; λ) = e2, (2.3)

where e1 = (1, 0)T and e2 = (0, 1)T . The normalized Jost functions are solutions
to the following Volterra integral equations:

ϕ±(x; λ) = e1 (2.4a)

+
∫ x
±∞

(
1 0

0 e− i2 (λ2−λ−2)(x−y)

)
Q(λ; u(y), v(y)) ϕ±(y; λ)dy,

φ±(x; λ) = e2 (2.4b)

+
∫ x
±∞

(
e
i
2 (λ

2−λ−2)(x−y) 0
0 1

)
Q(λ; u(y), v(y)) φ±(y; λ)dy.

A standard assumption in analyzing Volterra integral equations is Q(λ; u(·),
v(·)) ∈ L1(R) for fixed λ �= 0 which is equivalent to (u, v) ∈ L1(R) ∩ L2(R)

by the definition of Q. In this case, for every λ ∈ (R∪i R) \ {0}, Volterra integral
equations (2.4) admit unique solutions ϕ±(·; λ) and φ±(·; λ) in the space L∞(R).
However, even if (u, v) ∈ L1(R) ∩ L2(R) the L1-norm of Q(λ; u(·), v(·)) is not
controlled uniformly in λ as λ → 0 and |λ| → ∞. This causes difficulties in
studying the behaviour of ϕ±(·; λ) and φ±(·; λ) as λ → 0 and |λ| → ∞ and thus
we need to transform the spectral problem (2.1) to two equivalent forms. These two
transformations generalize the exact transformation of the Kaup–Newell spectral
problem to the Zakharov–Shabat spectral problem, see [19, 29].

2.1 Transformation of the Jost Functions for Small λ

Assume u ∈ L∞(R), λ �= 0, and define the transformation matrix by

T (u; λ) :=
(

1 0
u λ−1

)
. (2.5)

Let ψ be a solution of the spectral problem (2.1) and define " := T ψ .
Straightforward computations show that " satisfies the equivalent linear equation

"x = L", (2.6)

with new linear operator

L = Q1(u, v)+ λ2Q2(u, v)+ i
4

(
λ2 − 1

λ2

)
σ3 (2.7)
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where

Q1(u, v) =
( − i4 (|u|2 + |v|2) i

2u

ux − i
2u|v|2 − i

2v
i
4 (|u|2 + |v|2)

)

and

Q2(u, v) = i
2

(
uv − v

u+ u2v −uv
)
.

Let us define z := λ2 and introduce the partition C = B0 ∪ S
1 ∪ B∞ with

B0 := {z ∈ C : |z| < 1},S1 := {z ∈ C : z| = 1}, B∞ := {z ∈ C : |z| > 1}. (2.8)

The second term in (2.7) is bounded if z ∈ B0. The normalized Jost functions
associated to the spectral problem (2.6) denoted by {m±, n±} can be obtained from
the original Jost functions {ϕ±, ψ±} by the transformation formulas:

m±(x; z) = T (u(x); λ)ϕ±(x; λ), n±(x; z) = λ T (u(x); λ)φ±(x; λ), (2.9)

subject to the constant boundary conditions at infinity:

lim
x→±∞m±(x; λ) = e1 and lim

x→±∞ n±(x; λ) = e2. (2.10)

The transformed Jost functions are solutions to the following Volterra integral
equations:

m±(x; z) = e1 (2.11a)

+
∫ x
±∞

(
1 0

0 e− i2 (z−z−1)(x−y)

)
[Q1(u(y), v(y))+ zQ2(u(y), v(y))]m±(y; z)dy,

n±(x; z) = e2 (2.11b)

+
∫ x
±∞

(
e
i
2 (z−z−1)(x−y) 0

0 1

)
[Q1(u(y), v(y))+ zQ2(u(y), v(y))] n±(y; z)dy.

Compared to [29], we have an additional term i
2z(x − y) in the argument of the

oscillatory kernel and the additional term zQ2(u, v) under the integration sign.
However, both additional terms are bounded in B0 where |z| < 1. Therefore, the
same analysis as in the proof of Lemmas 1 and 2 in [29] yields the following.

Lemma 1 Let (u, v) ∈ L1(R) ∩ L∞(R) and ux ∈ L1(R). For every z ∈ (−1, 1),
there exist unique solutions m±(·; z) ∈ L∞(R) and n±(·; z) ∈ L∞(R) satisfying



Inverse Scattering for the Massive Thirring Model 503

the integral equations (2.11). For every x ∈ R, m±(x, ·) and n∓(x, ·) are continued
analytically in C

± ∩B0. There exist a positive constant C such that

‖m±(·; z)‖L∞ + ‖n∓(·; z)‖L∞ ≤ C, z ∈ C
± ∩B0. (2.12)

Lemma 2 Under the conditions of Lemma 1, for every x ∈ R the normalized Jost
functions m± and n± satisfy the following limits as Im(z)→ 0 along a contour in
the domains of their analyticity:

lim
z→0

m±(x; z)
m∞± (x)

= e1, lim
z→0

n±(x; z)
n∞± (x)

= e2, (2.13)

where

m∞± (x) = e−
i
4

∫ x
±∞(|u|2+|v|2)dy, n∞± (x) = e

i
4

∫ x
±∞(|u|2+|v|2)dy .

If in addition u ∈ C1(R), then

lim
z→0

1

z

[
m±(x; z)
m∞± (x)

− e1
]
=
(− ∫ x±∞ [u(ux − i

2u|v|2 − i
2v)− i

2uv
]
dy

2iux + u|v|2 + v
)
, (2.14a)

lim
z→0

1

z

[
n±(x; z)
n∞± (x)

− e2
]
=
(

u∫ x
±∞
[
u(ux − i

2u|v|2 − i
2v)− i

2uv
]
dy

)
. (2.14b)

Remark 1 By Sobolev’s embedding of H 1(R) into the space of continuous,
bounded, and decaying at infinity functions, if u ∈ H 1(R), then u ∈ C(R)∩L∞(R)
and u(x) → 0 as |x| → ∞. By the embedding of L2,1(R) into L1(R), if
u ∈ H 1,1(R), then u ∈ L1(R) and ux ∈ L1(R). Thus, requirements of Lemma 1 are
satisfied if (u, v) ∈ H 1,1(R). The additional requirement u ∈ C1(R) of Lemma 2 is
satisfied if u ∈ H 2(R). Hence, X(u,v) in (1.5) is an optimal L2-based Sobolev space
for direct scattering of the MTM system (1.1).

Remark 2 Notations (m±, n±) for the Jost functions used here are different from
notations (m±, n±) used in [29], where an additional transformation was used to
generate n± (denoted by p± in [29]). This additional transformation is not necessary
for our further work.

2.2 Transformation of the Jost Functions for Large λ

Assume v ∈ L∞(R) and define the transformation matrix by

T̂ (v; λ) :=
(

1 0
v λ

)
. (2.15)
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Let ψ be a solution of the spectral problem (2.1) and define "̂ := T̂ ψ .
Straightforward computations show that "̂ satisfies the equivalent linear equation

"̂x = L̂"̂, (2.16)

with new linear operator

L̂ = Q̂1(u, v)+ 1

λ2 Q̂2(u, v)+ i
4

(
λ2 − 1

λ2

)
σ3 (2.17)

where

Q̂1(u, v) =
(

i
4 (|u|2 + |v|2) − i2v
vx + i

2 |u|2v + i
2u − i4 (|u|2 + |v|2)

)

and

Q̂2(u, v) = − i
2

(
uv −u

v + uv2 −uv
)
.

We introduce the same variable z := λ2 and note that the second term in (2.17)
is now bounded for z ∈ B∞. The normalized Jost functions associated to the
spectral problem (2.16) denoted by {m̂±, n̂±} can be obtained from the original Jost
functions {ϕ±, ψ±} by the transformation formulas:

m̂±(x; z) = T̂ (v(x); λ)ϕ±(x; λ), n̂±(x; z) = λ−1T̂ (v(x); λ)φ±(x; λ), (2.18)

subject to the constant boundary conditions at infinity:

lim
x→±∞ m̂±(x; λ) = e1 and lim

x→±∞ n̂±(x; λ) = e2. (2.19)

The transformed Jost functions are solutions to the following Volterra integral
equations:

m̂±(x; z) = e1 +
∫ x
±∞

(
1 0

0 e− i2 (z−z−1)(x−y)

)
(2.20a)

[
Q̂1(u(y), v(y))+ z−1Q̂2(u(y), v(y))

]
m̂±(y; z)dy,

n̂±(x; z) = e2 +
∫ x
±∞

(
e
i
2 (z−z−1)(x−y) 0

0 1

)
(2.20b)

[
Q̂1(u(y), v(y))+ z−1Q̂2(u(y), v(y))

]
n̂±(y; z)dy.
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Again, we have an additional term i
2z

−1(x − y) in the argument of the oscillatory
kernel and the additional term z−1Q̂2(u, v) under the integration sign. However,
both additional terms are bounded in B∞ where |z| > 1. The following two lemmas
contain results analogous to Lemmas 1 and 2.

Lemma 3 Let (u, v) ∈ L1(R)∩L∞(R) and vx ∈ L1(R). For every z ∈ R \[−1, 1],
there exist unique solutions m̂±(·; z) ∈ L∞(R) and n̂±(·; z) ∈ L∞(R) satisfying
the integral equations (2.20). For every x ∈ R, m̂±(x, ·) and n̂∓(x, ·) are continued
analytically in C

± ∩B∞. There exist a positive constant C such that

‖m̂±(·; z)‖L∞ + ‖̂n∓(·; z)‖L∞ ≤ C, z ∈ C
± ∩B∞. (2.21)

Lemma 4 Under the conditions of Lemma 3, for every x ∈ R the normalized Jost
functions m̂± and n̂± satisfy the following limits as Im(z)→∞ along a contour in
the domains of their analyticity:

lim|z|→∞
m̂±(x; z)
m̂∞± (x)

= e1, lim|z|→∞
n̂±(x; z)
n̂∞± (x)

= e2, (2.22)

where

m̂∞± (x) = e
i
4

∫ x
±∞(|u|2+|v|2)dy, n̂∞± (x) = e−

i
4

∫ x
±∞(|u|2+|v|2)dy .

If in addition v ∈ C1(R), then

lim|z|→∞ z
[
m̂±(x; z)
m̂∞± (x)

− e1
]
=
(− ∫ x±∞ [v(vx + i

2 |u|2v + i
2u)+ i

2uv
]
dy

−2ivx + |u|2v + u
)
,

(2.23a)

lim|z|→∞ z
[
n̂±(x; z)
n̂∞± (x)

− e2
]
=
(

v∫ x
±∞
[
v(vx + i

2 |u|2v + i
2u)+ i

2uv
]
dy

)
.

(2.23b)

2.3 Continuation of the Transformed Jost Functions Across S1

In Lemmas 1 and 3 we showed the existence of the transformed Jost functions

{m±(·; z), n±(·; z)}, z ∈ B0, and {m̂±(·; z), n̂±(·; z)}, z ∈ B∞,

respectively, where the partition (2.8) is used. Because both sets of the transformed
Jost functions are connected to the set {ϕ±, φ±} of the original Jost functions by
the transformation formulas (2.9) and (2.18), respectively, we find the following
connection formulas for every z ∈ S

1:
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m±(x; z) =
(

1 0
u(x)− z−1v(x) z−1

)
m̂±(x; z), (2.24a)

n±(x; z) =
(

z 0
u(x)z− v(x) 1

)
n̂±(x; z), (2.24b)

or in the opposite direction,

m̂±(x; z) =
(

1 0
v(x)− zu(x) z

)
m±(x; z), (2.25a)

n̂±(x; z) =
(

z−1 0
v(x)z−1 − u(x) 1

)
n±(x; z). (2.25b)

By Lemmas 3 and 4, the right-hand sides of (2.24a) and (2.24b) yield analytic
continuations of m±(x; ·) and n∓(x; ·) in C

± ∩B∞ respectively with the following
limits as Im(z)→∞ along a contour in the domains of their analyticity:

lim|z|→∞
m±(x; z)
m̂∞± (x)

= e1 + u(x)e2, lim|z|→∞
n±(x; z)
n̂∞± (x)

= v̄(x)e1 + (1 + u(x)v̄(x))e2.
(2.26)

Analogously, by Lemmas 1 and 2, the right-hand sides of (2.25a) and (2.25b) yield
analytic continuations of m̂±(x; ·) and n̂∓(x; ·) in C

± ∩B0 respectively with the
following limits as Im(z)→ 0 along a contour in the domains of their analyticity:

lim
z→0

m̂±(x; z)
m∞± (x)

= e1 + v(x)e2, lim
z→0

n̂±(x; z)
n∞± (x)

= ū(x)e1 + (1 + ū(x)v(x))e2.
(2.27)

By Lemmas 1–4, and the continuation formulas (2.24), (2.25), we obtain the
following result.

Lemma 5 Let (u, v) ∈ L1(R) ∩ L∞(R) and (ux, vx) ∈ L1(R). For every x ∈ R

the Jost functions defined by the integral equations (2.11) and (2.20) can be
continued such that m±(x; ·), n∓(x; ·), m̂±(x; ·), and n̂∓(x; ·) are analytic in C

±
and continuous in C

± ∪R with bounded limits as z → 0 and |z| → ∞ given
by (2.13), (2.22), (2.26), (2.27).

3 Scattering Coefficients

In order to define the scattering coefficients between the transformed Jost functions
{m±, n±} and {m̂±, n̂±}, we go back to the original Jost functions {ϕ±, φ±}. For
every λ ∈ (R∪i R) \ {0}, we define the standard form of the scattering relation by
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(
ϕ−(x; λ)eix(λ2−λ−2)/4

φ−(x; λ)e−ix(λ2−λ−2)/4

)
=
(
α(λ) β(λ)

γ (λ) δ(λ)

)(
ϕ+(x; λ)eix(λ2−λ−2)/4

φ+(x; λ)e−ix(λ2−λ−2)/4

)
. (3.1)

Since the operator L in (1.3) admits the symmetry

φ±(x; λ) = ±
(

0 −1
1 0

)
ϕ±
(
x; λ) ,

we obtain

γ (λ) = −β(λ), δ(λ) = α(λ), λ ∈ (R∪i R) \ {0}. (3.2)

Since the matrix operator L in (1.3) has zero trace, the Wronskian determinantW
of any two solutions to the spectral problem (2.1) for any λ ∈ C is independent of x.
By computing the Wronskian determinants of the solutions {ϕ−, φ+} and {ϕ+, ϕ−}
as x → +∞ and using the scattering relation (3.1) and the asymptotic behavior of
the Jost functions {ϕ±, ψ±}, we obtain

⎧⎨
⎩
α(λ) = W

(
ϕ−(x; λ)eix(λ2−λ−2)/4, φ+(x; λ)e−ix(λ2−λ−2)/4

)
,

β(λ) = W
(
ϕ+(x; λ)eix(λ2−λ−2)/4, ϕ−(x; λ)eix(λ2−λ−2)/4

)
.

(3.3)

It follows from the asymptotic behavior of {ϕ−, φ−} as x →−∞ thatW(ϕ−, φ−) =
1. Substituting (3.1) and using the asymptotic behavior of {ϕ+, φ+} as x → +∞
yield the following constraint on the scattering data:

α(λ)δ(λ)− β(λ)γ (λ) = 1, λ ∈ (R∪i R) \ {0}. (3.4)

In view of the constraints (3.2), the constraint (3.4) can be written as

α(λ)α(λ)+ β(λ)β(λ) = 1, λ ∈ (R∪i R) \ {0}. (3.5)

By using the transformation formulas (2.9) we can rewrite the scattering
relation (3.1) in terms of the transformed Jost functions {m±, n±}. In particular,
we apply T (u; λ) to the first equation in (3.1) and λT (u; λ) to the second equation
in (3.1), so that we obtain for z ∈ R\{0},
(
m−(x; z)eix(z−z−1)/4

n−(x; z)e−ix(z−z−1)/4

)
=
(
a(z) b+(z)

−b−(z) a(z)
)(
m+(x; z)eix(z−z−1)/4

n+(x; z)e−ix(z−z−1)/4

)
, (3.6)

where we have recalled z = λ2 and defined the scattering coefficients:

a(z) := α(λ), b+(z) := λ−1β(λ), b−(z) := λβ(λ), z ∈ R\{0}. (3.7)
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Sincem±(x; z) and n±(x; z) depend on z = λ2, we deduce that α is even in λ and β
is odd in λ for λ ∈ (R∪i R)\{0}. The latter condition yields λβ(λ) = λβ(λ), which
has been used already in the expression (3.7) for b−(z). Thanks to the relation (3.5),
we have the following constraints

{ |α(λ)|2 + |β(λ)|2 = 1, λ ∈ R\{0},
|α(λ)|2 − |β(λ)|2 = 1, λ ∈ iR\{0}. (3.8)

Since the matrix operator L in (2.7) has zero trace, the Wronskian determinant
W of any two solutions to the spectral problem (2.6) is also independent of x. As
a result, by computing the Wronskian determinant as x → +∞ and using the
asymptotic behavior of the Jost functions {m±, n±}, we obtain from the scattering
relation (3.6) for z ∈ R\{0}:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a(z) = W
(
m−(x; z)eix(z−z−1)/4, n+(x; z)e−ix(z−z−1)/4

)
,

b+(z) = W
(
m+(x; z)eix(z−z−1)/4,m−(x; z)eix(z−z−1)/4

)
,

b−(z) = W
(
n+(x; z)e−ix(z−z−1)/4, n−(x; z)e−ix(z−z−1)/4

)
,

(3.9)

in accordance with the representation (3.3).
Analogously, by using the transformation formulas (2.18) we can rewrite the

scattering relation (3.1) in terms of the transformed Jost functions {m̂±, n̂±}. In
particular, we apply T̂ (u; λ) to the first equation in (3.1) and λ−1T̂ (u; λ) to the
second equation in (3.1), so that we obtain for z ∈ R \{0},
(
m̂−(x; z)eix(z−z−1)/4

n̂−(x; z)e−ix(z−z−1)/4

)
=
(
â(z) b̂+(z)

−b̂−(z) â(z)

)(
m̂+(x; z)eix(z−z−1)/4

n̂+(x; z)e−ix(z−z−1)/4

)
, (3.10)

where we have recalled z = λ2 and defined the scattering coefficients

â(z) := α(λ), b̂+(z) := λβ(λ), b̂−(z) := λ−1β(λ), z ∈ R \{0}. (3.11)

Since the matrix operator L̂ in (2.17) has zero trace, we obtain from the scattering
relation (3.10) for z ∈ R\{0}:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

â(z) = W
(
m̂−(x; z)eix(z−z−1)/4, n̂+(x; z)e−ix(z−z−1)/4

)
,

b̂+(z) = W
(
m̂+(x; z)eix(z−z−1)/4, m̂−(x; z)eix(z−z−1)/4

)
,

b̂−(z) = W
(
n̂+(x; z)e−ix(z−z−1)/4, n̂−(x; z)e−ix(z−z−1)/4

)
,

(3.12)

in accordance with the representation (3.3).
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It follows from (3.7) and (3.11) that the two sets of scattering data are actually
related by

â(z) = a(z), b̂+(z) = b−(z), b̂−(z) = b+(z), z ∈ R\{0}. (3.13)

These relations are in agreement with the continuation formulas (2.24) and (2.25).
By using the representations (3.9) and (3.12), as well as Lemma 2, 4, and 5, we
obtain the following.

Lemma 6 Let (u, v) ∈ L1(R) ∩ L∞(R) and (ux, vx) ∈ L1(R). Then, a = â is
continued analytically into C

− with the following limits in C
−:

lim
z→0
a(z) = e− i4

∫
R
(|u|2+|v|2)dy =: a0 (3.14)

and

lim|z|→∞ a(z) = e
i
4

∫
R
(|u|2+|v|2)dy =: a∞. (3.15)

On the other hand, b± = b̂∓ are not continued analytically beyond the real line and
satisfy the following limits on R:

lim
z→0
b±(z) = lim|z|→∞ b±(z) = 0. (3.16)

To simplify the inverse scattering transform, we consider the case of no eigenval-
ues or resonances in the spectral problem (2.1), where eigenvalues and resonances
are defined as follows.

Definition 1 We say that the potential (u, v) admits an eigenvalue at z0 ∈ C
− if

a(z0) = 0 and a resonance at z0 ∈ R if a(z0) = 0.

By taking the limit x → +∞ in the Volterra integral equations (2.11a)
and (2.20a) for m− and m̂− respectively and comparing it with the first equations
in the scattering relations (3.6) and (3.10), we obtain the following equivalent
representations for a = â:

a(z) = 1 − i
4

∫
R

[
(|u|2 + |v|2)m(1)− − 2ūm(2)− − 2zv̄(um(1)− −m(2)− )

]
dx,

z ∈ B0 ∩ C
−, (3.17a)

a(z) = 1 + i
4

∫
R

[
(|u|2 + |v|2)m̂(1)− − 2v̄m̂(2)− − 2z−1ū(vm̂

(1)
− − m̂(2)− )

]
dx,

z ∈ B∞ ∩ C
−, (3.17b)
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where the superscripts denote components of the Jost functions. If (u, v) ∈ H 1,1(R)

are defined in the ball of radius δ for some δ ∈ (0, 1), then constants C in (2.12)
and (2.21) are independent of δ. Then, it follows from (3.17) that if δ is sufficiently
small, then the integrals can be made as small as needed for every z ∈ C

− ∪R. This
implies the following.

Lemma 7 Let (u, v) ∈ L1(R)∩L∞(R) and (ux, vx) ∈ L1(R) be sufficiently small.
Then (u, v) does not admit eigenvalues or resonances in the sense of Definition 1.

Remark 3 The result of Lemma 7 was first obtained in Theorem 6.1 in [26]. No
transformation of the spectral problem (2.1) was employed in [26]. Transformations
similar to those we are using here were employed later in [29] in the context of the
derivative NLS equation.

Remark 4 The result of Lemma 7 is useful for the study of long-range scattering
from small initial data. Eigenvalues can always be included by using Bäcklund
transformation for the MTM system [9, 27]. Resonances are structurally unstable
and can be removed by perturbations of initial data [3, 27].

4 Riemann–Hilbert Problems

We will derive two Riemann–Hilbert problems. The first problem is formulated
for the transformed Jost functions {m±, n±}, whereas the second problem is
formulated for the transformed Jost functions {m̂±, n̂±}. Thanks to the asymptotic
representations (2.14) and (2.23), the first problem is useful for reconstruction of
the component u as z→ 0, whereas the second problem is useful for reconstruction
of the component v as |z| → ∞, both components satisfy the MTM system (1.1).
This pioneering idea has first appeared on a formal level in [34]. The following
assumption is used to simplify solutions to the Riemann–Hilbert problems.

Assumption 1 Assume that the scattering coefficient a admits no zeros in
C
− ∪ R.

Assumption 1 corresponds to the initial data (u0, v0) which admit no eigenvalues
or resonances in the sense of Definition 1. By Lemma 7, the assumption is satisfied
if the H 1,1(R) norm on the initial data is sufficiently small. Since a is continued
analytically into C

− by Lemma 6 with nonzero limits (3.14) and (3.15), zeros of a
lie in a compact set. Therefore, if a admits no zeros in C

− ∪ R by Assumption 1,
then there is A > 0 such that |a(z)| ≥ A for every z ∈ R.
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4.1 Riemann-Hilbert Problem for the Potential u

The asymptotic limit (2.26) presents a challenge to use {m±, n±} for reconstruction
of (u, v) as |z| → ∞. On the other hand, the reconstruction formula for (u, v)
in terms of {m±, n±} is available from the asymptotic limit (2.14) as z → 0. In
order to avoid this complication, we use the inversion transformation ω = 1/z,
which maps 0 to ∞ and vice versa. The analyticity regions swap under the inversion
transformation so that {m−, n+} become analytic in C

+ for ω and {m+, n−} become
analytic in C

− for ω.
Let us define matrices P±(x;ω) ∈ C

2×2 for every x ∈ R and ω ∈ R by

P+(x;ω) :=
[
m−(x;ω−1)

a(ω−1)
, n+(x;ω−1)

]
, P−(x;ω) :=

[
m+(x;ω−1),

n−(x;ω−1)

a(ω−1)

]
,

(4.1)

and two reflection coefficients

r±(ω) = b±(ω
−1)

a(ω−1)
, ω ∈ R, (4.2)

The scattering relation (3.6) can be rewritten as the following jump condition for the
Riemann–Hilbert problem:

P+(x;ω) = P−(x;ω)
[

1 + r+(ω)r−(ω) r−(ω)e− i2 (ω−ω−1)x

r+(ω)e
i
2 (ω−ω−1)x 1

]

If the scattering coefficient a satisfies Assumption 1, then P±(x; ·) for every
x ∈ R are continued analytically in C

± by Lemmas 5 and 6. We denote these
continuations by the same letters. Asymptotic limits (2.13) and (3.14) yield the
following behavior of P±(x;ω) for large |ω| in the domains of their analyticity:

P±(x;ω)→
[
m∞+ (x) 0

0 n∞+ (x)

]
=: P∞(x) as |ω| → ∞.

Since we prefer to work with x-independent boundary conditions, we normalize the
boundary conditions by defining

M±(x;ω) :=
[
P∞(x)

]−1
P±(x;ω), ω ∈ C

± . (4.3)

The following Riemann-Hilbert problem is formulated for the functionM(x; ·).



512 D. E. Pelinovsky and A. Saalmann

Riemann-Hilbert Problem 1 For each x ∈ R, find a 2 × 2-matrix valued
functionM(x; ·) such that

(1) M(x; ·) is piecewise analytic in C \R with continuous boundary values

M±(x;ω) = lim
ε↓0
M(x;ω ± iε), z ∈ R.

(2) M(x;ω)→ I as |ω| → ∞.
(3) The boundary valuesM±(x; ·) on R satisfy the jump relation

M+(x;ω)−M−(x;ω) = M−(x;ω)R(x;ω), ω ∈ R,

where

R(x;ω) :=
[
r+(ω)r−(ω) r−(ω)e−

i
2 (ω−ω−1)x

r+(ω)e
i
2 (ω−ω−1)x 0

]
.

It follows from the asymptotic limits (2.14) and the normalization (4.3) that
the components (u, v) of the MTM system (1.1) are related to the solution of the
Riemann–Hilbert problem 1 by using the following reconstruction formulas:[
2iu′(x)+ u(x)|v(x)|2 + v(x)

]
e
i
2

∫ +∞
x (|u|2+|v|2)dy = lim|ω|→∞ω[M(x;ω)]21 (4.4)

and

u(x)e−
i
2

∫ +∞
x (|u|2+|v|2)dy = lim|ω|→∞ω[M(x;ω)]12, (4.5)

where the subscript denotes the element of the 2 × 2 matrixM .

Remark 5 The gauge factors in (4.4)–(4.5) appear because of the normaliza-
tion (4.3) and the asymptotic limits (2.14). A different approach was utilized
in [16, 22] to avoid these gauge factors. The inverse scattering transform was
developed to a different spectral problem, which was obtained from the Kaup–
Newell spectral problem after a gauge transformation.

4.2 Riemann-Hilbert Problem for the Potential v

Let us define matrices P̂±(x; z) ∈ C
2×2 for every x ∈ R and z ∈ R by

P̂+(x; z) :=
[
m̂+(x; z), n̂−(x; z)

â(z)

]
, P̂−(x; z) :=

[
m̂−(x; z)
â(z)

, n̂+(x; z)
]
, (4.6)
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and two reflection coefficients by

r̂±(z) = b̂±(z)
â(z)

= b∓(z)
a(z)

, z ∈ R, (4.7)

where the relations (3.13) have been used. The scattering relation (3.10) can be
rewritten as the following jump condition for the Riemann–Hilbert problem:

P̂+(x; z) = P̂−(x; z)
[

1 −r̂−(z)e i2 (z−z−1)x

−r̂+(z)e− i2 (z−z−1)x 1 + r̂+(z)̂r−(z)

]

If the scattering coefficient a satisfies Assumption 1, then P̂±(x; ·) for every
x ∈ R are continued analytically in C

± by Lemmas 5 and 6. We denote these
continuations by the same letters. Asymptotic limits (2.22) and (3.15) yield the
following behavior of P̂ (x; z) for large |z| in the domains of their analyticity:

P̂±(x; z)→
[
m̂∞+ (x) 0

0 n̂∞+ (x)

]
=: P̂∞(x), as |z| → ∞.

In order to normalize the boundary conditions, we define

M̂±(x; z) :=
[
P̂∞(x)

]−1
P̂±(x; z), z ∈ C

± . (4.8)

The following Riemann-Hilbert problem is formulated for the function M̂(x; ·).

Riemann-Hilbert Problem 2 For each x ∈ R, find a 2 × 2-matrix valued
function M̂(x; ·) such that

(1) M̂(x; ·) is piecewise analytic in C \R with continuous boundary values

M̂±(x; z) = lim
ε↓0
M̂(x; z± iε), z ∈ R.

(2) M̂(x; z)→ I as |z| → ∞.
(3) The boundary values M̂±(x; ·) on R satisfy the jump relation

M̂+(x; z)− M̂−(x; z) = M̂−(x; z)R̂(x; z),

where

R̂(x; z) :=
[

0 −r̂−(z)e i2 (z−z−1)x

−r̂+(z)e− i2 (z−z−1)x r̂+(z)̂r−(z)

]
.
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It follows from the asymptotic limit (2.23) and the normalization (4.8) that the
components (u, v) of the MTM system (1.1) can be recovered from the solution of
the Riemann–Hilbert problem 2 by using the following reconstruction formulas:

[
−2iv′(x)+ |u(x)|2v(x)+ u(x)

]
e−
i
2

∫ +∞
x (|u|2+|v|2)dy = lim|z|→∞ z

[
M̂(x; z)]21 (4.9)

and

v(x)e
i
2

∫ +∞
x (|u|2+|v|2)dy = lim|z|→∞ z

[
M̂(x; z)]12 , (4.10)

where the subscript denotes the element of the 2 × 2 matrixM .
Let us now outline the reconstruction procedure for (u, v) as a solution of the

MTM system (1.1) in the inverse scattering transform. If the right-hand sides of (4.5)
and (4.10) are controlled in the space H 1(R) ∩ L2,1(R), then (ũ, ṽ) ∈ H 1(R) ∩
L2,1(R), where

ũ(x) = u(x)e i2
∫ +∞
x (|u|2+|v|2)dy, ṽ(x) = v(x)e− i2

∫ +∞
x (|u|2+|v|2)dy .

Since |ũ(x)| = |u(x)| and |ṽ(x)| = |v(x)|, the gauge factors can be immediately
inverted, and since H 1(R) is continuously embedded into Lp(R) for any p ≥ 2, we
then have (u, v) ∈ H 1(R) ∩ L2,1(R). If the right-hand sides of (4.4) and (4.9) are
also controlled inH 1(R)∩L2,1(R), then similar arguments give (u′, v′) ∈ H 1(R)∩
L2,1(R), that is, (u, v) ∈ H 2(R) ∩ H 1,1(R), in agreement with the function space
used for direct scattering transform.

Remark 6 It follows from the limit (3.16) that R(x; 0) = R̂(x; 0) = 0 implying
M+(x; 0) = M−(x; 0) and M̂+(x; 0) = M̂−(x; 0). More precisely, using (2.26),
(2.27), (3.14), (3.15), and ω = z−1 we can derive

M(x; 0) =
[
m∞+ (x) 0

0 n∞+ (x)

]−1 [
1 v(x)

u(x) 1 + u(x)v(x)
] [
m̂∞+ (x) 0

0 n̂∞+ (x)

]

and

M̂(x; 0) =
[
m̂∞+ (x) 0

0 n̂∞+ (x)

]−1 [
1 u(x)

v(x) 1 + u(x)v(x)
] [
m∞+ (x) 0

0 n∞+ (x)

]
.

In particular, the following holds:

[M(x; 0)]11 = m̂
∞+ (x)
m∞+ (x)

= e− i2
∫ +∞
x (|u|2+|v|2)dy,

[M̂(x; 0)]11 = m
∞+ (x)
m̂∞+ (x)

= e i2
∫ +∞
x (|u|2+|v|2)dy .
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In these formulas, we regain the same exponential factors as those in the reconstruc-
tion formulas (4.5) and (4.10). Hence, by substitution we obtain the following two
decoupled reconstruction formulas:

u(x) = [M(x; 0)]11 lim|ω|→∞ω[M(x;ω)]12,

v(x) = [M̂(x; 0)]11 lim|z|→∞ z[M̂(x; z)]12.
(4.11)

Whereas Eqs. (4.4), (4.5), (4.9) and (4.10) are suitable for studying the inverse
map of the scattering transformation in the sense of Theorem 2, the equivalent
formulas (4.11) are useful in the analysis of the asymptotic behavior of u(x) and
v(x) as |x| → ∞.

4.3 Estimates on the Reflection Coefficients

In order to be able to solve the Riemann–Hilbert problems 1 and 2, we need to
derive estimates on the reflection coefficients r± and r̂± defined by (4.2) and (4.7).
We start with the Jost functions. In order to exclude ambiguity in notations, we write
m±(x; z) ∈ H 1

z (R) for the same purpose as m±(x; ·) ∈ H 1(R).
Thanks to the Fourier theory reviewed in Proposition 1 in [29], the Volterra

integral equations (2.11) and (2.20) with the oscillation factors e
i
2 (ω

−1−ω) and

e
i
2 (z−z−1)x are estimated respectively in the limits |ω| → ∞ and |z| → ∞, where
ω := z−1, similarly to what was done in the proof of Lemma 3 in [29]. As a result,
we obtain the following.

Lemma 8 Let (u, v) ∈ H 1,1(R). Then for every x ∈ R
±, we have

m±(x;ω−1)−m∞± (x)e1 ∈ H 1
ω(R \[−1, 1]),

n±(x;ω−1)− n∞± (x)e2 ∈ H 1
ω(R \[−1, 1]).

(4.12)

and

m̂±(x; z)− m̂∞± (x)e1 ∈ H 1
z (R \[−1, 1]),

n̂±(x; z)− n̂∞± (x)e2 ∈ H 1
z (R \[−1, 1]).

(4.13)

If in addition (u, v) ∈ H 2(R), then

ω

[
m±(x;ω−1)

m∞± (x)
− e1

]

−
(− ∫ x±∞ [u(ux − i

2u|v|2 − i
2v)− i

2uv
]
dy

2iux + u|v|2 + v
)
∈ L2

ω(R \[−1, 1]), (4.14a)
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ω

[
n±(x;ω−1)

n∞± (x)
− e2

]

−
(

u∫ x
±∞
[
u(ux − i

2u|v|2 − i
2v)− i

2uv
]
dy

)
∈ L2

ω(R \[−1, 1]). (4.14b)

and

z

[
m̂±(x; z)
m̂∞± (x)

− e1
]

−
(− ∫ x±∞ [v(vx + i

2 |u|2v + i
2u)+ i

2uv
]
dy

−2ivx + |u|2v + u
)
∈ L2

z(R \[−1, 1]), (4.15a)

z

[
n̂±(x; z)
n̂∞± (x)

− e2
]

−
(

v∫ x
±∞
[
v(vx + i

2 |u|2v + i
2u)+ i

2uv
]
dy

)
∈ L2

z(R \[−1, 1]). (4.15b)

The following lemma transfers the estimates of Lemma 8 to the scattering
coefficients a and b± by using the same analysis as in the proof of Lemma 4 in [29].

Lemma 9 Let (u, v) ∈ H 1,1(R). Then,

a(ω−1)− a0, b+(ω−1), b−(ω−1) ∈ H 1
ω(R \[−1, 1]), (4.16)

and

a(z)− a∞, b+(z), b−(z) ∈ H 1
z (R \[−1, 1]). (4.17)

If in addition (u, v) ∈ H 2(R), then

b+(ω−1), b−(ω−1) ∈ L2,1
ω (R \[−1, 1]), (4.18)

and

b+(z), b−(z) ∈ L2,1
z (R \[−1, 1]). (4.19)

The following lemma transfers the estimates of Lemma 9 to the reflection
coefficients r± and r̂±. We give an elementary proof of this result since it is based
on new computations compared to [29].

Lemma 10 Assume (u, v) ∈ X(u,v), where X(u,v) is given by (1.5), and a satisfies
Assumption 1. Then (r+, r−) ∈ X(r+,r−), where X(r+,r−) is given by (1.6).
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Proof Under the conditions of the lemma, it follows from Lemma 9 and from the
definitions (4.2) and (4.7) that

r±(ω) ∈ Ḣ 1
ω(R \[−1, 1]) ∩ L̇2,1

ω (R \[−1, 1])

and

r̂±(ω) ∈ Ḣ 1
z (R \[−1, 1]) ∩ L̇2,1

z (R \[−1, 1]).

It also follows from (4.2) and (4.7) that r±(ω) = r̂∓(ω−1).
If f (x) ∈ L̇2,1

x (1,∞) and f̃ (y) := f (y−1), then f̃ (y) ∈ L̇2,−2
y (0, 1), which

follows by the chain rule:

∫ ∞

1
x2|f (x)|2dx =

∫ 1

0
y−4|f̃ (y)|2dy.

Since L̇2,1(1,∞) is continuously embedded into L̇2,−2(1,∞) and L̇2,−2(0, 1) is
continuously embedded into L̇2,1(0, 1), we verify that r±(z) ∈ L̇2,1

z (R)∩ L̇2,−2
z (R)

and r̂±(ω) ∈ L̇2,1
ω (R) ∩ L̇2,−2

ω (R).
Finally, if f (x) ∈ Ḣ 1

x (1,∞) and f̃ (y) := f (y−1), then f̃ (y) ∈ Ḣ 1,1
y (0, 1),

which follows by the chain rule f ′(x) = −x−2f̃ ′(x−1) and

∫ ∞

1
|f ′(x)|2dx =

∫ 1

0
y2|f̃ ′(y)|2dy.

Combing all requirements together, we obtain the space X(r+,r−) both for (r+, r−)
in z and for (r̂+, r̂−) in ω, where X(r+,r−) is given by (1.6). � 
Remark 7 It follows from the relations (3.7) and (3.11) that r+(ω) = ωr−(ω) and
r̂+(z) = ẑr−(z). Then, it follows from Lemma 10 and the chain rule that

if r+, r̂+ ∈ Ḣ 1(R \[−1, 1])∩L̇2,1(R), then r−, r̂− ∈ Ḣ 1,1(R \[−1, 1])∩L̇2,2(R)

and

if r−, r̂− ∈ Ḣ 1,1([−1, 1]) ∩ L̇2,−2(R) then r+, r̂+ ∈ Ḣ 1([−1, 1]) ∩ L̇2,−3(R).

Therefore, we have r+, r̂+ ∈ Ḣ 1(R)∩ L̇2,1(R)∩ L̇2,−3(R) and r−, r̂− ∈ Ḣ 1,1(R)∩
L̇2,2(R) ∩ L̇2,−2(R).

Remark 8 It may appear strange for the first glance that the direct and inverse
scattering transforms for the MTM system (1.1) connect potentials (u, v) ∈ X(u,v)
and reflection coefficients (r+, r−) ∈ X(r+,r−) in different spaces, whereas the
Fourier transform provides an isomorphism in the spaceH 1(R)∩L2,1(R). However,
the appearance of X(u,v) spaces for the potential (u, v) is not surprising due to the
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transformation of the linear operator L to the equivalent forms (2.7) and (2.17). The
condition (u, v) ∈ X(u,v) ensures that (Q1,2, Q̂1,2) ∈ H 1(R) ∩ L2,1(R), hence,
the direct and inverse scattering transform for the MTM system (1.1) provides a
transformation between (Q1,2, Q̂1,2) ∈ H 1(R) ∩ L2,1(R) and (r+, r−) ∈ X(r+,r−),
which is a natural transformation under the Fourier transform with oscillatory phase
eix(ω−ω−1). This allows us to avoid reproducing the Fourier analysis anew and
to apply all the technical results from [29] without any changes, as these results
generalize the classical results of Deift and Zhou [11, 37] obtained for the cubic
NLS equation.

4.4 Solvability of the Riemann–Hilbert Problems

Let us define the reflection coefficient

r(λ) := β(λ)
α(λ)
, λ ∈ R∪(i R)\{0}. (4.20)

Recall the relations (3.7), (3.11), (4.2), and (4.7) which yield

λ−1r(λ) = r+(ω) = ωr−(ω), ω ∈ R \{0}. (4.21)

and

λr(λ) = r̂+(z) = ẑr−(z), z ∈ R \{0}. (4.22)

Also recall that z = λ2 and ω = λ−2. By extending the proof of Propositions 2
and 3 in [29], we obtain the following.

Lemma 11 If (r+, r−) ∈ X(r+,r−), then

r(λ) ∈ L2,1
ω (R) ∩ L∞ω (R), r(λ) ∈ L2,1

z (R) ∩ L∞z (R), (4.23)

and

λ−1r+(ω) ∈ L∞ω (R), λr̂+(z) ∈ L∞z (R). (4.24)

Proof Let us prove the embeddings in L2
z(R) space. The proof of the embeddings

in L2
ω(R) space is analogous. Relation (4.22) implies |r(λ)|2 = |r̂+(z)||r̂−(z)| and

r(λ) =
{
λ−1r̂+(z), |z| ≥ 1,
λr̂−(z), |z| ≤ 1.
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Since r̂+, r̂− ∈ L2,1(R), Cauchy–Schwarz inequality implies r(λ) ∈ L2,1
z (R).

Since r̂+ ∈ H 1(R) by Remark 7, r(λ) ∈ L∞z (R \[−1, 1]). In order to prove that
r(λ) ∈ L∞z ([−1, 1]), we will show that λr̂−(z) ∈ L∞z ([−1, 1]). This follows from
the representation

zr̂−(z)2 =
∫ z

0

[
r̂2−(z)+ 2zr̂−(z)r̂ ′−(z)

]
dz

and the Cauchy–Schwarz inequality, since r̂− ∈ Ḣ 1,1(R) ∩ L2(R). Similarly,
λr̂+(z) ∈ L∞(R) since r̂+ ∈ H 1(R) ∩ L2,1(R). � 
Remark 9 By using the relations (3.8), we obtain another constraint on r(λ):

1 − |r(λ)|2 = 1

|α(λ)|2 ≥ c20 > 0, λ ∈ iR, (4.25)

where c−1
0 := supλ∈i R |α(λ)| <∞, which exists thanks to Lemma 6.

Under Assumption 1 as well as the constraints (4.23) and (4.25), the jump
matrices in the Riemann–Hilbert problems 1 and 2 satisfy the same estimates as
in Proposition 5 in [29]. Hence these Riemann–Hilbert problems can be solved and
estimated with the same technique as in the proofs of Lemmas 7, 8, and 9 in [29].
The following summarizes this result.

Lemma 12 Under Assumption 1, for every r(λ) ∈ L2
ω(R) ∩ L∞ω (R) satisfy-

ing (4.25), there exists a unique solution of the Riemann–Hilbert problem 1
satisfying for every x ∈ R:

‖M±(x;ω)− I‖L2
ω
≤ C‖r(λ)‖L2

ω
, (4.26)

where the positive constant C only depends on ‖r(λ)‖L∞ω . Similarly, under Assump-
tion 1, for every r(λ) ∈ L2

z(R) ∩ L∞z (R) satisfying (4.25), there exists a unique
solution of the Riemann–Hilbert problem 2 satisfying for every x ∈ R:

‖M̂±(x; z)− I‖L2
z
≤ Ĉ‖r(λ)‖L2

z
(4.27)

where the positive constant Ĉ only depends on ‖r(λ)‖L∞z .

The potentials u and v are recovered respectively fromM and M̂ by means of the
reconstruction formulas (4.5) and (4.10), whereas the derivatives of the potentials
u′ and v′ are recovered from the reconstruction formulas (4.4) and (4.9). At the first
order in terms of the scattering coefficient (see, e.g., [3]), we have to analyze the
integrals like

lim|ω|→∞ω[M(x;ω)]12 ∼ i

2π

∫
R

r−(ω)e−
i
2 (ω−ω−1)xdω (4.28)
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in the space H 1
x (R) ∩ L2,1

x (R). In order to control the remainder term of the
representation (4.28) in H 1

x (R) ∩ L2,1
x (R), we need to generalize Proposition 7 in

[29] for the case of the oscillatory factor

'(s) = 1

2

(
s − 1

s

)
.

The following lemma presents this generalization in the function space

X0 := H 1(R\[−1, 1]) ∩ Ḣ 1,1([−1, 1]) ∩ L̇2,−1([−1, 1]).

The proof of this lemma is a non-trivial generalization of analysis of the Fourier
integrals.

Lemma 13 There is a positive constantC such that for all x0 ∈ R+ and all f ∈ X0,
we have

sup
x∈(x0,∞)

‖〈x〉P±[f (.)e∓ix'(.)]‖L2(R) ≤ C‖f ‖X0 (4.29)

where 〈x〉 := (1+x2)1/2 and the Cauchy projection operators are explicitly given by

P±[f (.)](z) := lim
ε↓0

1

2πi

∫
R

f (s)

s − (z± i ε)ds, z ∈ R .

In addition, if f ∈ X0 ∩ L̇2,−1(R), then

sup
x∈R

‖P±[f (.)e∓ix'(.)]‖L∞(R) ≤ C
(
‖f ‖X0 + ‖f ‖L̇2,−1(R)

)
. (4.30)

Furthermore, if f ∈ L2,1(R) ∩ L̇2,−1(R), then

sup
x∈R

‖P±[(.−.−1)f (.)e∓ix'(.)]‖L2(R) ≤ C
(
‖f ‖L2,1(R)+‖f ‖L̇2,−1(R)

)
. (4.31)

Proof Consider the decomposition

f (s)e∓ix'(s) = f (s)e∓ix'(s)χR−(s)+ f (s)e∓ix'(s)χR+(s),

where χS is a characteristic function on the set S ⊂ R. Thanks to the linearity of
P±, it is sufficient to consider separately the functions f that vanish either on R+
or on R−. In the following we give an estimate for P+[f (.)e−ix'(.)χR+(.)]. The
other case is handled analogously.

Fix x > 0 and consider the following decomposition:

f (s)e−ix'(s)χR+(s) = hI (x, s)+ hII (x, s), (4.32)
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with

hI (x, s) = e−ix'(s) 1

2π

∫ ∞

x/4
eik(s−s−1)a[f ](k)dk

and

hII (x, s) = e−i x4 (s−s−1) 1

2π

∫ x/4
−∞
ei(k−

x
4 )(s−s−1)a[f ](k)dk,

where

a[f ](k) :=
∫ ∞

0
e−ik(s−s−1) 1 + s2

s2
f (s)ds. (4.33)

The following change of coordinates

y(s) = s − s−1, s(y) = y
2
+
√

1 + y
2

4
,

s′(y) = 1

2
+ y

4

⎛
⎝
√

1 + y
2

4

⎞
⎠
−1

= s(y)2

1 + s(y)2

shows that a[f ](k) = F[f̃ ](k), where the function f̃ is given by

f̃ (y) = f (s(y)), y ∈ R

and F denotes the Fourier transform

F[f̃ ](k) =
∫ ∞

−∞
e−iky f̃ (y)dy.

We obtain

‖f̃ ‖2
L2(R)

=
∫
R

|f (s(y))|2dy =
∫ ∞

0

1 + s2
s2

|f (s)|2ds ≤ ‖f ‖2
X0

and

‖f̃ ′‖2
L2(R)

=
∫
R

(
s(y)2

1 + s(y)2
)2

|f ′(s(y))|2dy =
∫ ∞

0

s2

1 + s2 |f
′(s)|2ds ≤ ‖f ‖2

X0
.
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It follows that f̃ ∈ H 1(R) and thus by Fourier theory a[f ](k) ∈ L2,1
k (R). Using the

inverse Fourier transform

F−1[g](y) = 1

2π

∫
R

eiykg(k)dk,

we find for s > 0:

f (s) = f̃ (y(s)) = F−1[a[f ]](y(s)) = 1

2π

∫
R

eik(s−s−1)a[f ](k)dk. (4.34)

Addressing the decomposition (4.32), we obtain for the functions hI thanks to
s′(y) < 1:

‖hI (x, ·)‖2
L2(R+) ≤

∥∥∥∥ 1

2π

∫ ∞

x/4
eikya[f ](k)dk

∥∥∥∥
L2
y(R)

=
∫ ∞

x/4
|a[f ](k)|2dk ≤ C

1 + x2 ‖a[f ]‖2
L2,1(R)

. (4.35)

On the other hand, the function hII (x, ·) is analytic in the domain {Im(s) < 0} and
additionally for s = −iξ with ξ ∈ R+ we have

|hII (x, s)| ≤ C‖a[f ]‖L2,1(R)e
− x4 (ξ+ξ−1).

Therefore, ‖hII (x, ·)‖L2(i R−) is decaying exponentially as x →∞. Now we have

‖P+[f (.)e−ix'(.)χR+(.)]‖L2(R)

≤ ‖P+[hI (x,.)χR+(.)]‖L2(R) + ‖P+[hII (x,.)χR+(.)]‖L2(R)

Since P+ is a bounded operator L2(R+)→ L2(R) it follows by (4.35) that

‖P+[hI (x,.)χR+(.)]‖L2(R) ≤ ‖hI (x, ·)‖2
L2(R+) ≤ C〈x〉−1‖f ‖2

X0
.

Using a suitable path of integration and the analyticity of hII we find that

P+[hII (x,.)](z) = −Pi R−[hII (x,.)](z),
where

Pi R−[h](z) :=
1

2πi

∫ 0

−∞
h(is)

is − zds, z ∈ R,

for a function h : i R− → C. Since Pi R− is a bounded operator L2(i R−) →
L2(R) (see, e.g., estimate (23.11) in [4]) and because ‖hII (x, ·)‖L2(i R−) is decaying
exponentially as x →∞, the proof of the estimate (4.29) is complete.
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In order to prove the estimate (4.30), we first note that for z ≤ 0

|P+[e−ix'(.)f (.)χR+(.)](z)|

≤
∫ ∞

0

|f (s)|
s
ds

≤
(∫ 1

0

|f (s)|2
s2
ds

)1/2

+
(∫ ∞

1

1

s2
ds

)1/2(∫ ∞

1
|f (s)|2ds

)1/2

≤ C
(
‖f ‖X0 + ‖f ‖L̇2,−1(R)

)
. (4.36)

Thus it remains to estimate |P+[e−ix'(.)f (.)χR+(.)](z)| for z > 0. First, we will
derive a bound for the special case x = 0 and by (4.39) below we will see that the
same bound holds for any x ∈ R. Therefore, using (4.34) we decompose

f (s) = h+(s)+ h−(s), h±(s) := ± 1

2π

∫ ±∞

0
eik(s−s−1)a[f ](k)dk,

where h± has an analytic extension within the domain {s ∈ C : Re(s) > 0,
± Im(s) > 0} and for ξ > 0 we have

|h±(±iξ)| ≤ C‖e−k(ξ+ξ−1)‖L2(R+)‖a[f ]‖L2
k(R±)

= C√
2

√
ξ

1 + ξ2
‖a[f ]‖L2

k(R±)
. (4.37)

Using a residue calculation we obtain for z > 0

P+[f (.)χR+(.)](z) = lim
ε↓0

1

2πi

∫ ∞

0

h+(s)+ h−(s)
s − (z± i ε) ds

= Pi R+[h+](z)− Pi R−[h−](z)+ h+(z).

Thanks to the bound (4.37), the summands Pi R+[h+](z) and Pi R−[h−](z) are
estimated in the following way,

sup
z∈R+

|Pi R±[h±](z)| ≤
∫ ∞

0

|h±(±iξ)|
ξ

dξ

≤ C
∫ ∞

0

1√
ξ
√

1 + ξ2
dξ‖a[f ]‖L2

k(R±)

≤ C‖a[f ]‖L2
k(R±)
.
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In addition, for z > 0 we have |h+(z)| ≤ ‖a[f ]‖L1
k(R+)

so that the triangle
inequality implies:

sup
z∈R+

|P+[f (.)χR+(.)](z)| ≤ C
(‖a[f ]‖L1(R) + ‖a[f ]‖L2(R)

)
. (4.38)

Now, let us reinsert the factor e−ix'(s). From the definition of a it follows that
multiplication by e−ix'(s) is equivalent of a shift of a[f ](k) in the k-variable,

a[e−ix'(.)f (.)](k) = a[f (.)]
(
k + x

2

)
. (4.39)

Thus, the L1(R) ∩ L2(R)-norm with respect to k of a[e−ix'(.)f (.)](k) does not
depend on x. Therefore, (4.38) yields

sup
z∈R+

|P+[e−ix'(.)f (.)χR+(.)](z)| ≤ C‖a[e−ix'(.)f (.)]‖L1(R)∩L2(R)

= C‖a[f ]‖L1(R)∩L2(R) ≤ C‖f ‖X0 , (4.40)

which, together with (4.36), completes the proof of (4.30).
Finally, the bound (4.31) follows from ‖P±‖L2→L2 = 1 and the fact that

(s − s−1)f (s) ∈ L2
s (R) if f ∈ L2,1(R) ∩ L̇2,−1(R). � 

The first term in (4.28) is estimated with a similar change of coordinates y :=
ω−ω−1 and further analysis in the proof of Lemma 13. However, it is controlled in
H 1
x (R) ∩ L2,1

x (R) if the scattering coefficient r− is defined in X(r+,r−) according to
the bound∣∣∣∣

∫
R

r−(ω)e−
i
2 (ω−ω−1)xdω

∣∣∣∣
H 1
x (R)∩L2,1

x (R)

≤ C‖r−‖X(r+,r−) . (4.41)

By using the estimate (4.41) and the estimates of Lemma 13, we can proceed
similarly to Lemmas 10, 11, and 12 in [29]. The following lemma summarize the
estimates on the potential (u, v) obtained from the reconstruction formulas (4.4)–
(4.5) and (4.9)–(4.10).

Lemma 14 Under Assumption 1, for every (r+, r−) ∈ X(r+,r−) and (̂r+, r̂−) ∈
X(r+,r−), the components (u, v) ∈ X(u,v) satisfy the bound

‖u‖H 2∩H 1,1 + ‖v‖H 2∩H 1,1

≤ C
(
‖r+‖X(r+,r−) + ‖r−‖X(r+,r−) + ‖r̂+‖X(r+,r−) + ‖r̂−‖X(r+,r−)

)
, (4.42)

where the positive constant C depends on ‖r±‖X(r+,r−) and ‖r̂±‖X(r+,r−) .
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Lemma 10 proves the first assertion of Theorem 2. Lemma 14 proves the second
assertion of Theorem 2 at t = 0. It remains to prove the second assertion of
Theorem 2 for every t ∈ R.

4.5 Time Evolution of the Spectral Data

Thanks to the well-posedness result of Theorem 1 and standard estimates in
weighted L2-based Sobolev spaces, there exists a global solution (u, v) ∈
C(R, X(u,v)) to the MTM system (1.1) for any initial data (u, v)|t=0 = (u0, v0) ∈
X(u,v). For this global solution, the normalized Jost functions (2.2) can be extended
for every t ∈ R:

{
ϕ±(t, x; λ) = ψ(±)1 (t, x; λ)e−ix(λ

2−λ−2)/4−it (λ2+λ−2)/4,

φ±(t, x; λ) = ψ(±)2 (t, x; λ)eix(λ
2−λ−2)/4+it (λ2+λ−2)/4.

(4.43)

where (ϕ±, φ±) still satisfy the same boundary conditions (2.3). Introducing the
scattering coefficients in the same way as in Sect. 3, we obtain the time evolution of
the scattering coefficients:

α(t, λ) = α(0, λ), β(t, λ) = β(0, λ)e−it (λ2+λ−2)/2, λ ∈ R∪(i R)\{0}. (4.44)

Transferring the scattering coefficients to the reflection coefficients with the help
of (3.7), (3.11), (4.2), and (4.7) yields the time evolution of the reflection coeffi-
cients:

r±(t, ω) = r±(0, ω)e−it (ω+ω−1)/2, ω ∈ R \{0} (4.45)

and

r̂±(t, z) = r̂±(0, z)e−it (z+z−1)/2, z ∈ R \{0}. (4.46)

It is now clear that if r± and r̂± are in X(r+,r−) at the initial time t = 0, then they
remain in X(r+,r−) for every t ∈ R. Thus, the recovery formulas of Lemma 14 for
the global solution (u, v) ∈ C(R, X(u,v)) to the MTM system (1.1) hold for every
t ∈ R. This proves the second assertion of Theorem 2 for every t ∈ R. Hence
Theorem 2 is proven.

Remark 10 Adding the time dependence to the Riemann-Hilbert problem 1
we find the time-dependent jump relation M+(x, t;ω) − M−(x, t;ω) =
M−(x, t;ω)R(x, t;ω), where

R(x, t;ω) :=
[

r+(ω)r−(ω) r−(ω)e−
i
2 (ω−ω−1)x+ i2 (ω+ω−1)t

r+(ω)e
i
2 (ω−ω−1)x− i2 (ω+ω−1)t 0

]
.
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The same phase function as in R(x, t;ω) appears in the inverse scattering theory for
the sine-Gordon equation. A Riemann-Hilbert problem with such a phase function
was studied in [7], where the long-time behavior of the sine-Gordon equation was
analyzed.

Remark 11 In the context of the MTM system (1.1), it is more natural to address
global solutions in weighted H 1 space such as H 1,1(R) and drop the requirement
(u, v) ∈ H 2(R). The scattering coefficients r± and r̂± are then defined in the space
X0. However, there are two obstacles to develop the inverse scattering transform for
such a larger class of initial data. First, the asymptotic limits (2.14a) and (2.23a)
are not justified, therefore, the recovery formulas (4.4) and (4.9) cannot be utilized.
Second, without requirement r±, r̂± ∈ L2,1(R), the time evolution (4.45)–(4.46) is
not closed inX0 since r−, r̂− ∈ L2,−2(R) cannot be verified. In this sense, the space
X(u,v) for (u, v) and X(r+,r−) for (r+, r−) and (̂r+, r̂−) are optimal for the inverse
scattering transform of the MTM system (1.1).

5 Conclusion

We gave functional-analytical details on how the direct and inverse scattering
transforms can be applied to solve the initial-value problem for the MTM system
in laboratory coordinates. We showed that initial data (u0, v0) ∈ X(u,v) admitting
no eigenvalues or resonances defines uniquely the spectral data (r+, r−) inX(r+,r−).
With the time evolution added, the spectral data (r+, r−) remain in the space
X(r+,r−) and determine uniquely the solution (u, v) to the MTM system (1.1) in
the space X(u,v).

We conclude the paper with a list of open questions.
The long-range scattering of solutions to the MTM system (1.1) for small initial

data for which the assumption of no eigenvalues or resonances is justified can be
considered based on the inverse scattering transform presented here. This will be
the subject of the forthcoming work, where the long-range scattering results in [6]
obtained by regular functional-analytical methods are to be improved.

The generalization of the inverse scattering transform in the case of eigenvalues
is easy and can be performed similarly to what was done for the derivative NLS
equation in [27]. However, it is not so easy to include resonances and other spectral
singularities in the inverse scattering transform. In particular, the case of algebraic
solitons [20] corresponds to the spectral singularities of the scattering coefficients
due to slow decay of (u, v) and analysis of this singular case is an open question.

Finally, another interesting question is to consider the inverse scattering trans-
form for the initial data decaying to constant (nonzero) boundary conditions. The
MTM system (1.1) admits solitary waves over the nonzero background [2] and
analysis of spectral and orbital stability of such solitary waves is at the infancy
stage.
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