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Small-amplitude weakly coupled oscillators of the Klein—Gordon lattices are approx-
imated by equations of the discrete nonlinear Schrodinger type. We show how to
justify this approximation by two methods, which have been very popular in the recent
literature. The first method relies on a priori energy estimates and multi-scale decompo-
sitions. The second method is based on a resonant normal form theorem. We show that
although the two methods are different in the implementation, they produce equivalent
results as the end product. We also discuss the applications of the discrete nonlinear
Schrédinger equation in the context of existence and stability of breathers of the Klein—
Gordon lattice.
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1. Introduction

We consider the one-dimensional discrete Klein-Gordon (dKG) equation with the
hard quartic potential in the form

i+ a+ad=e(wjn — 2@+ x;), jEL, (1.1)

where t € R is the evolution time, z;(t) € R is the horizontal displacement of
the jth particle in the one-dimensional chain, and € > 0 is the coupling constant
of the linear interaction between neighboring particles. The dKG equation (1.1) is
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associated with the conserved-in-time energy

H= %Zw’?—l—x?—l—e(xjﬂ—xj)2+32x?7 (1.2)
JEZ JEZ
which is also the Hamiltonian function of the dKG equation (1.1) written in the
canonical variables {x;,;};cz. The initial-value problem for the dKG equation
(1.1) is globally well-posed in the sequence space ¢?(Z), thanks to the coercivity of
the energy H in (1.2) in ¢?(Z).
By using a scaling transformation

i) = (14267 2,t), T=1+2)Y%, é=(1+2¢) "¢, (1.3)

and dropping the tilde notations, the dKG equation (1.1) can be rewritten without
the diagonal terms in the discrete Laplacian operator,

B+ aj+ o} = ez +x), jEL (1.4)

Note that the values of € in (1.4) are now restricted to the range (O !

, 5), because
the map € — (1+ 2¢)~'e is a diffeomorphism from (0, 00) to (0, ). This restriction
does not represent a limitation if we study the solutions of the dKG equation for
sufficiently small values of e.

We consider the Cauchy problem for the dKG equation (1.4) and we aim at
giving an approximation of its solutions by means of equations of the discrete
nonlinear Schrodinger type, up to suitable time scales. This approach can be useful
in general, but it may have additional interest when particular classes of solutions
of the dKG equation (1.4) are taken into account. In the case of systems of weakly
coupled oscillators, the relevant objects are given by time-periodic and spatially
localized solutions called breathers.

Existence and stability of breathers have been studied in the dKG equation in
many recent works. In particular, exploring the limit of weak coupling between the
nonlinear oscillators, existence [27] and stability [2, 4] of the fundamental (single-
site) breathers were established (see also the recent works in [30, 31]). More compli-
cated multi-breathers were classified from the point of their spectral stability in the
recent works [1, 25, 33]. Nonlinear stability and instability of multi-site breathers
were recently studied in [11].

If the oscillators have small amplitudes in addition to being weakly coupled,
the stability of multi-breathers in the dKG equation is related to the stability of
multi-solitons in the discrete nonlinear Schrédinger (ANLS) equation:

2ia; + 3|aj|2aj =aj41+aj_1, JE€E Z, (15)

where a;(et) € C is the envelope amplitude for the linear harmonic e* supported
by the linear dKG equation (1.4) with € = 0. The relation between the dKG and
the dNLS equations (1.4) and (1.5) was observed in [29, 33] based on numerical
simulations and perturbation results, respectively.
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The present contribution addresses the justification of the dNLS equation (1.5),
and its generalizations, for the weakly coupled small-amplitude oscillators of the
dKG equation (1.4). In fact, we are going to explore two alternative but comple-
mentary points of view on the justification process, which enables us to establish
rigorous bounds on the error terms, over the time scale during which the dynamics
of the dNLS equation (1.5) is observed.

The first method in the justification of the dNLS equation (1.5) for small-
amplitude weakly coupled oscillators of the dKG equation (1.4) is based on a priori
energy estimates and elementary continuation arguments. This method was used
in the derivation of the dNLS equation [8] and the Korteweg—de Vries equation
[5, 12, 13, 38] in a similar context of the Fermi-Pasta—Ulam lattice. The energy
method is based on the decomposition of the solution into the leading-order multi-
scale approximation and the error term. The error term is controlled by integrating
the dKG equation with a small residual term over the relevant time scale. The
energy method is computationally efficient and simple enough for most practical
applications.

The second method is based on the resonant normal form theorem, which trans-
forms the given Hamiltonian of the dKG equation to a simpler form by means of
near-identity canonical transformations [3, 16]. The normal form, once it is obtained
in the sense of an abstract theorem, does not require any additional work for the
derivation and the justification of both the dNLS equation and its generalizations,
which appear immediately in the corresponding relevant regimes. Starting from
the works [17, 18], the normal form approach for the dKG equation was recently
elaborated in [30] and applied in [31] for a stability result.

‘We hope that the present discussion of the two equivalent methods can motivate
the readers for the choice of a suitable analytical technique in the justification
analysis of similar problems of lattice dynamics. It is our understanding that the
two methods are equivalent with respect to the results (error estimates, time scales)
but they have some differences in the way one proves such results.

Besides justifying the dNLS equation (1.5) on the time scale O(e~ '), we also
extend the error bounds on the longer time intervals of O(|log(e)|e~!). Similar
improvements were reported in various other contexts of the justification analysis
[8, 22, 24, 26]. Within the context of breathers, we show how the known results on
the existence and stability of multi-solitons in the dNLS equation (1.5) can be used
for similar results for the dKG equation (1.4).

We finish the introduction with a review of related results. Small-amplitude
breathers of the dKG and dNLS equations were approximated with the continuous
nonlinear Schrédinger equation in the works [6, 7, 36]. An alternative derivation
of the continuous nonlinear Schrédinger equation was discussed in the context of
the Fermi—Pasta—Ulam lattice [19-21, 37]. In the opposite direction, the derivation
and the justification of the dNLS equation from a continuous nonlinear Schrédinger
equation with a periodic potential were developed in the works [34, 35]. The jus-
tification of the popular variational approximation for multi-solitons of the dANLS
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equation in the limit of weak coupling between the nonlinear oscillators is reported
in [9]. Bifurcations of periodic traveling waves from the linear limit of coupled non-
linear oscillators was developed with the use of symmetries of the ANLS equation
in [14, 15].

The paper is organized as follows. Section 2 reports the justification results
obtained from the energy method and multi-scale expansions. Section 3 presents
the justification results obtained from the normal form theorem. Section 4 discusses
applications of these results for the existence and stability of breathers in the dKG
equation.

2. Justification of the dNLS Equation with the Energy Method

In what follows, we consider the limit of weak coupling between the nonlinear oscil-
lators, where € is a small positive parameter. We also consider the small-amplitude
oscillations starting with small-amplitude initial data. Hence, we use the scaling
transformation x; = pt/ 2§j, where p is another small positive parameter. Incorpo-
rating both small parameters, we rewrite the dKG equation (1.4) in the equivalent
form

§G+8&+0E =elri+&1), jEL (2.1)

The standard approximation of multi-breathers in the dKG equation (2.1) with

multi-solitons of the dNLS equation (1.5) corresponds to the balance p = €. In

Secs. 2.1-2.3, we generalize the standard dNLS approximation by assuming that

€2 < p < e. In Sec. 2.4, we discuss further generalizations when p belongs to the
asymptotic range €3 < p < €2.

2.1. Preliminary estimates

To recall the standard dNLS approximation, we define the slowly varying approxi-
mate solution of the dKG equation (2.1) in the form

X;(t) = aj(et)e™ + a;(et)e ™. (2.2)
Substituting the leading-order solution (2.2) to the dKG equation (2.1) and remov-
ing the resonant terms e*® at the leading order of O(e), we obtain the dNLS
equation in the form
2iaj + 3vlaja; = aji1 +aj_1, j€Z, (2.3)
where the dot denotes the derivative with respect to the slow time 7 = et and the
parameter v = p/e is defined in the asymptotic range e < v < 1.
With the account of the dNLS equation (2.3), the leading-order solution (2.2)
substituted into the dKG equation (2.1) produces the residual terms in the form
Res;(t) := p(a?egit + &3’-6_3“) + e (aje +aje ). (2.4)

The second residual term is resonant but occurs in the higher order O(e?), which is
not an obstacle in the justification analysis. The first residual term is non-resonant
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but it occurs at the leading order of O(p) > O(e?). Therefore, the first term needs
to be removed, which is achieved with the standard near-identity transformation.
Namely, we extend the leading-order approximation (2.2) to the form

) 1 ) )
X;(t) = aj(et)e’™ + a;(et)e ™ + gp(a?(et)e?’” + al(et)e "), (2.5)

For simplicity, we do not mention that X; depends on e and p. Substituting the
approximation (2.5) into the dKG equation (2.1), we obtain the new residual terms
in the form

L . 1 ) B B Y
Res;(t) := eQ(aje” +aje y — §ep((a§’+1 + a?_l)e?’“ + (a;)?_|r1 + a?_l)e Z)’“)

3 . . . e e 9 . . e e
+ gpQ(aje” +aje ”)Q(a?ew + a?e ity ¢ Zep(za?aje?”t — za?aje ity

i R i _3 —3i 1 3 3it | =3 _—3i
+6—4p3(ajet+aje t)(a?e?’t—l—a?e 3t)2+§e2p(a?e3t+a§?e 375)

+ ot e . (2.6)
Note that all the time derivatives of a; in the residual term (2.6) can be elimi-
nated from the dNLS equation (2.3) provided that {a;}cz is a twice differentiable
sequence with respect to time. For all purposes we need, it is sufficient to consider
the sequence space (?(Z). Hence we denote the sequence {a;};ez in [*(Z) by a.
The next results give preliminary estimates on global solutions of the dNLS
equation (2.3), the leading-order approximation (2.5), and the residual term (2.6).

Lemma 1. For every ag € (*(Z) and every v € R, there exists a unique global
solution a(t) of the dNLS equation (2.3) in (*(Z) for every t € R such that a(0) =
ag. Moreover, the solution a(t) is smooth in t and ||a(t)| 2 = ||ao||e-

Proof. Local well-posedness and smoothness of the local solution a with respect
to the time variable ¢ follow from the contraction principle applied to an integral
version of the dANLS equation (2.3). The contraction principle can be applied because
the discrete Laplacian operator is a bounded operator on ¢?(Z), whereas (?(Z) is a
Banach algebra with respect to pointwise multiplication and the ¢?(Z) norm is an
upper bound for the ¢°°(Z) norm of a sequence. Global continuation of the local
solution a follows from the ¢?(Z) conservation of the dANLS equation (2.3). O

Lemma 2. For every ag € (%(Z), there exists a positive constant Cx (||ag||¢2) (that
depends on ||ag||e2) such that for every p € (0,1] and every t € R, the leading-order
approximation (2.5) is estimated by

IX(®)llz + X (Bl < Cx(llaollez). (2.7)

Proof. The result follows from the Banach algebra property of £2(Z) and the global
existence result of Lemma 1. m|
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Lemma 3. Assume that p < €. For every ag € (*(Z), there exists a positive -
independent constant Cr(||ao||s2) (that depends on ||agl|s2) such that for every e €
(0,1] and every t € R, the residual term in (2.6) is estimated by

IRes(t)llez < Cr(llao]le)e”. (2.8)

Proof. The result follows from the Banach algebra property of £(Z), as well as
from the global existence and smoothness of the solution a(t) of the dNLS equation
(2.3) in Lemma 1. m|

2.2. Justification of the dNLS equation on the dNNLS time scale

The main result of this section is the following justification theorem.

Theorem 1. Assume that p is defined in the asymptotic range €2 < p < €. For
every 1o > 0, there is a small €9 > 0 and positive constants Cy and C such that for
every € € (0,¢€q), for which the initial data satisfies

16(0) = X(0) 2= + [1£(0) = X(0) 22 < Cop™ '€, (2.9)
the solution of the dKG equation (2.1) satisfies for every t € [—1op~t, Top™ 1],
I€(t) = X(@)lli= + [1€() = X(@)llz < Cp~ e (2.10)

Remark 1. If p = ¢, the justification result of Theorem 1 guarantees that the
dynamics of small-amplitude oscillators follows closely the dynamics of the dNLS
equation (1.5) on the dNLS time scale [—7g, 79| for the variable 7 = et.

Remark 2. If p = ¢%/°, the error term in (2.10) satisfies the Op2 (¢2/®) bound. The
error term is controlled on the longer time scale [—moe~3/5, 70e=3/5] for the variable
7 = et of the ANLS equation (2.3) with v = %/°.

To develop the justification analysis, we write £(t) = X(t) + y(t), where X(¢) is
the leading-order approximation (2.5) and y(¢) is the error term. Substituting the
decomposition into the lattice equation (2.1), we obtain the evolution problem for
the error term:

i + v+ 30X y; + 3pX,y7 + py} — €(yjp1 +yj-1) + Res; =0, j€Z,
(2.11)

where the residual term Res(t) is given by (2.6) if a(t) satisfies the dANLS equation
(2.3). Associated with the evolution equation (2.11), we also define the energy of
the error term

1 .
E(t) := 5 Y [} +uj + 30Xy} — 2ey5y541]- (2.12)
JEZ
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For every € € (0,1), the energy E(t) is coercive and controls the £2(Z) norm of the
solution in the sense

IyOlZ + Iyl < 4E(), (2.13)

for every ¢, for which the solution y(¢) is defined. The rate of change for the energy
(2.12) is found from the evolution problem (2.11):

dE

—= =D [ Res; +3pX;X;u7 — 3pX;u79; — pyjis)- (2.14)

JEL

Thanks to the coercivity (2.13), the Cauchy-Schwarz inequality, and the con-
tinuous embedding of ¢?(Z) to £°>°(Z), we obtain

‘ < 2E"?[|[Res(t)[|2 + 6o X (1) 2| X(#) ]2

+12pE||X(t) 2 + 8pE3/2]. (2.15)

To simplify the analysis, it is better to introduce the parametrization £ = Q% and
rewrite (2.15) in the equivalent form

dqQ .
2| < IRes(Ol + GpQIXO KO+ 120 QX D) + 8% (210
The energy estimate (2.16) is the starting point for the proof of Theorem 1.

Proof of Theorem 1. Let 79 > 0 be fixed arbitrarily but independently of ¢ and
assume that the initial norm of the perturbation term satisfies the following bound

Q(0) < Cop™'é?, (2.17)
where Cj is a positive e-independent constant and € € (0, %) is sufficiently small.
Note that the bound (2.17) follows from the assumption (2.9) and the energy (2.12)

subject to the choice of the constant Cj.
To justify the dNLS equation (2.3) on the time scale [—7op~1, 7op~1] for ¢, we
define

To:=supto € [0,70p ']: sup Q(t) < Cop ey, (2.18)
te[—to,to]

where Cg > Cj is a positive e-independent constant to be determined below. By
the continuity of the solution in the ¢?(Z) norm, it is clear that Ty > 0.

By using Lemmas 2 and 3, as well as the definition (2.18), we write the energy
estimate (2.16) for every t € [Ty, Tp] in the form
d
’ dcf < Cr€® + p(6C% + 12CxCop~ '€ +8CHp %M Q. (2.19)
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If € > 0 is sufficiently small and €2 < p, for every t € [—Tp, Tp], one can always find
a positive e-independent kg such that

6C% +12CxCqop '€ +8CHp 2e* < ko. (2.20)
Integrating (2.19), we obtain
It] ,
Q(t)e=rRoltl — Q(0) < CreZe PRt g’ < Cre (2.21)
0 pko

By using (2.17), we obtain for every t € [Ty, Tp):
Q(t) < pre*(Co + ky ' Cr)ero™. (2.22)
Hence, we can define Cq := (Co+ky 'Cr)e"™ and extend the time interval in
(2.18) by elementary continuation arguments to the full time span with Ty = m9p~ .
This completes the justification of the dNLS equation (2.3) in Theorem 1. |

2.3. Justification of the dNLS equation on the extended time scale
Next, we justify the dNLS equation (2.3) on the extended time scale

[~ Allog(p)[p™", Allog(p)|p~ "], (2.23)
for the variable t, where the positive constant A is fixed independently of €. The
main result of this section is the following justification theorem.
Theorem 2. Assume that there is o € (0, 1) such that p is defined in the asymptotic
range

61*% <L p<e

For every A € (0,ky 'a), where ko is defined in (2.28) below, there is a small ¢ > 0
and positive constants Cy and C such that for every e € (0, €g), for which the initial
data satisfies

1€0) = X (0) 112 + [|€(0) = X(0) |12 < Cop™"e?, (2.24)
the solution of the dKG equation (2.1) satisfies for every t in the time span (2.23),
1€8) = X (O)li2 + 1E() = X (D)1 < Cp~ '€ (2.25)

Remark 3. If p = ¢, the extended time scale (2.23) corresponds to the interval
[—Allog(e)|, Allog(e)]]

for the variable 7 = et in the dNLS equation (2.3), hence it extends to all times 7
as € — 0.

Remark 4. If p = €%/° then the error term in (2.25) satisfies the O (¢2(1742)/5)
bound, which is small if a € (07 %) The error term is controlled on the longer time
scale

[~ rollog(e)|e=*/%, mollog(9)le ]
for the variable 7 = et of the dNLS equation (2.3) with v = €3/°.
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Proof of Theorem 2. We use the same assumption (2.17) on the initial norm of
the perturbation term. To justify the dNLS equation (2.3) on the time scale (2.23)
for t, we define

T5 :=sup {to € [0, Allog(p)|p™']: sup Q1) < CQpl("eQ}, (2.26)

te[—to,to]
where Cq is a positive e-independent constant to be determined below.
By using Lemmas 2 and 3, as well as the definition (2.26), we write the energy
estimate (2.16) for every ¢t € [T, 1] in the form
d
‘d—?‘ < Cré® + p(6C% + 12CxCop™ '~ +8CHp 2T ehQ.  (2.27)
If € > 0 is sufficiently small and € < p'*®, then for every t € [T, 1], one can
always find a positive e-independent kg such that

6C% +12CxCop~' € + 8CEHp 20T et < k. (2.28)

By integrating the energy estimate (2.27) in the same way as is done in (2.21), we
obtain for every ¢t € [T, T¢]:

Q(t) < pr(Co + ky LCR)ekoAllos(P)]
< p 17 (Co + kg 'Cr), (2.20)

where the last bound holds because koA € (0, o). Hence, we can define Cg := Cy+
ky *Cr and extend the time interval in (2.26) by elementary continuation arguments
to the full time span with Tg = Allog(p)|p~!. This completes the justification of
the dNLS equation (2.3) on the time scale (2.23). O

2.4. Approzximations with the generalized dNLS equation

Extensions of the justification analysis are definitely possible by including more e-
dependent terms into the dNLS equation (2.3) and the leading-order approximation
(2.5), which makes the residual term (2.6) to be as small as O(e") for any n > 2.
These extensions are not so important if €2 < p < e but they become crucial to
capture the correct balance between linear and nonlinear effects on the dynamics
of small-amplitude oscillators if p < €2.

To illustrate these extensions, we show how to modify the justification analysis
in the asymptotic range €3 < p < €2. We use the same leading-order approximation
(2.5) in the form

it | = it L it | = —3i
X;(t) =aj(et)e™ +aj(et)e” ™ + gp(a?(et)e?’ fy ai?(et)e 3ity, (2.30)
but assume that a(r) with 7 = et satisfy the generalized dNLS equation
€
4

Here we have introduced the parameter § = p/e? in the asymptotic range € <
0 < 1. Substituting (2.30) and (2.31) into the dKG equation (2.1), we obtain the

2ia,; + 36(5|aj|2aj =ajy1+a;—1+ (aj+2 + 2a; + aj,g), J € Z. (2.31)
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modifications of the residual terms (2.6) in the form
1 . . 1 . i
Resj (t) = 262(4% + ajyo + 2aj + aj_g)e” + 262(4@- + ajyo + de + aj_g)e t

1 ) ) 1 . . .
—§6,0((a§-’+1+a§?71)63”+(d§?+1+d§?71)e*3“)+§62p(a§?e3”+65-’e’3“)

3 , , A 9 A . ,
+ gpz(aje“ + &jeﬂt)Q(a;?eS” + d;’e*?’”) + Zep(ia?aje?’” - id?djef?’”)

4 6_4p3(ajezt 4 aje—zt)(a?e?nt 4 a3e—31t)2 4 _p4(a?631t 4 a?e—Sit)S.
(2.32)

By using the extended dNLS equation (2.31), we realize that the residual terms of
the Oy (e?) order are canceled and the residual term in (2.32) enjoys the improved
estimate

IRes(t)lle: < Cr(llao]le)e?, (2.33)

compared with the previous estimate (2.8). As a result, the justification analysis
developed in the proof of Theorems 1 and 2 holds verbatim and results in the
following theorems.

Theorem 3. Assume that p is defined in the asymptotic range €3 < p < €2. For
every 1o > 0, there is a small €9 > 0 and positive constants Cy and C such that for
every € € (0,¢€q), for which the initial data satisfies

1€(0) = X(0) |12 + [|£(0) — X(0)[|2 < Cop™"e?, (2.34)
the solution of the dKG equation (2.1) satisfies for every t € [—1op~t, Top™ 1],
I€(t) = X(@)lli + [1€) = X(@)llz < Cp~ " (2.35)

Theorem 4. Assume that there is o € (O, %) such that p is defined in the asymp-

totic range
_3 2
eTHe L p < €.

There is Ag > 0 such that for every A € (0, Ag), there is a small €9 > 0 and positive
constants Cy and C' such that for every e € (0, ¢€p), for which the initial data satisfies

16(0) = X(0) 2= + [1£(0) = X(0) 22 < Cop™ "€, (2.36)
the solution of the dKG equation (2.1) satisfies for every t in the time span (2.23),
1€@t) = X(@)ll2 + 1E(t) = X(@)]li2 < Cp~ '€ (2.37)

We note that X in Theorems 3 and 4 is defined by the leading-order approxi-
mation (2.30), whereas a satisfies the generalized dNLS equation (2.31). The time
scales in Theorems 3 and 4 are appropriate for the generalized dNLS equation (2.31)
because § <1 and ep~! > e 1.
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3. Justification of the dNLS Equation with the Normal Form
Method

The purpose of this section is to show that the results of Theorems 1-4 can be
obtained with a different method relying on the resonant normal form theorem,
mainly working at the level of the Hamiltonians. This slightly different point of
view, as we stressed in the introduction, moves the main difficulties in the early
steps of this approach, in terms of definitions and theorems to get the normal form
established. But after this effort, it is straightforward to get the desired results of
justification of the dNLS equation in many different regimes.

Another difference between this section and the previous one is in the dimen-
sion of the chain, infinite for the energy method, and finite for the normal form
method, but with estimates uniform in the size of the chain. The main reason for
this asymmetry in the presentation is that the normal form theorems from the pre-
vious works [17, 18, 30] were developed for finite chains, and their extension to the
infinite case is beyond the scope of the present paper.

In what follows, we consider the dKG equation (1.4) on a finite chain of 2N + 1
oscillators under periodic boundary conditions, where N is arbitrary large but finite.
The finite dKG chain is associated with the Hamiltonian H = Hy + H;, where

N N
1 1
Ho = 5 Y Wi +af = 2exjazg), Hi= 1 2. o (31)
j=—N j=—N

subject to the periodic boundary conditions z_y = xny11 and y_n = yn41. 1t is
quite clear from the expression above that H is an extensive quantity, i.e. roughly
speaking proportional to N, and more precisely, it is translation invariant and with
a short interaction range (see [30, Sec. 2] for details). By preserving the extensivity,
via a suitable normal form construction, we are able to get uniform estimates with
respect to V.

To be more definite, it was proven in [30] that for any small coupling e, there
exists a canonical transformation Ty which puts the Hamiltonian H = Hy + Hj,
with Hy and H; in (3.1), into an extensive resonant normal form of order r

H" = Ho+ 2+ P {Hq, Z} =0, (3.2)

where Hq is the Hamiltonian for the system of 2N + 1 identical oscillators of
frequency Q (which is the average of the linear frequencies [18]), £ is a non-
homogeneous polynomial of order 2r + 2, P"t1 is a remainder of order 2r + 4
and higher, and r grows as an inverse power of €. Such a normal form was shown
to be well defined in a small ball B,.,2(0) C P of the phase space P, endowed
with the Euclidean norm (which becomes the ¢2(Z) norm in the limit N — o0o),
provided rp'/? < 1. The linear part of the Hamiltonian Hg = Qp is equivalent to
the selected squared norm (uniformly with N), thus the almost invariance of Hy
over times |t| ~ (r2p)~"~! is easily derived since Hg = {Hg, PUtD}.
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Looking at the structure of Z, the normal form Hg + Z produces a generalized
dNLS equation, where all the oscillators are coupled to all neighbors and the cou-
pling coefficients both for linear and nonlinear terms decay exponentially with the
distance between sites. To be more specific, Z can be split as the sum of homo-
geneous polynomials Zo, Z1, ..., Z,, where Z; is of the order 25 4 2, and r > 1.
Each of these homogenous polynomials can be developed in powers of the coupling
coefficient e, where the term of order €™ is responsible for the coupling between
lattice sites separated by the distance m. The key ingredient to obtain the normal
form is the preservation of the translation invariance (called cyclic symmetry in
[18, 30]), which also allows us to produce estimates that are uniform with N.

If we limit to r = 1, the transformed Hamiltonian (3.2) reads

HY =K+ PP K:=Hq+ Zo+ 2,

where the quadratic and quartic polynomials Zy and Z; include all-to-all interac-
tions, exponentially decaying with e. Hence, I represents the Hamiltonian of the
generalized dNLS equation. If we truncate both Zy and Z; at the leading order in
€, we recover the Hamiltonian of the usual dNLS equation.

The linear transformation is analyzed in Sec. 3.1. The nonlinear normal form
transformation is performed in Sec. 3.2. Approximations with the usual dNLS equa-
tion are obtained in Sec. 3.3. Approximations with the generalized dNLS equation
are discussed in Sec. 3.4.

3.1. Linear transformation

We start with the definitions of cyclic symmetry, interaction range, centered align-
ments and exponential decay (see also [18, 30]).

The translational invariance of the model (3.1) is formalized by using the idea
of cyclic symmetry. The cyclic permutation operator 7 is defined as

(&N, TN) = (T-N415 -, TN T-N). (3.3)

This operator can be applied separately to the variables x and y. We extend the
action of this operator on the space of functions as (7f)(z,y) = f(rz,Ty).

Definition 1 (Cyclic Symmetry). We say that a function F is cyclically sym-
metric if TF = F.

We introduce an operator, indicated by an upper symbol @, acting on functions:
given a function f, a new function F' = % is constructed as

N

F=f%:= Z ' f. (3.4)

I=—N

We say that f®(z,y) is generated by the seed f(x,y). Our convention is to
denote the cyclically symmetric functions by capital letters and their seeds by
the corresponding lower case letters. It is worth to note that the Hamiltonian
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H = Hy+ H; defined by (3.1) is clearly of the form H = h®, generated by the seed
h(z,y) = 5(y3 + 2f) — ewrzo + g25.

Definition 2 (Interaction Range). Given the exponents (j, k), we define the
support S(z7y*) of the monomials z7/y* and the interaction distance £(2/y") as
follows:

S@iy*)y ={l:51#00r k #0}, L(zly*) = diam(S(z7y")). (3.5)

We stress that, differently from what has been developed in [17, 18], it is possible
to impose that the seeds of all the functions are centrally aligned, according to the
following definition [30].

Definition 3 (Centered Alignment). Let F = f® be a cyclically symmetric
function, with f depending on 2N + 1 variables, f = f(z_n,...,Z0,...,zn). The
seed f is said to be centrally aligned if it admits the decomposition

N
F=>20m S S l=m,. m] (3.6)
m=0

In order to formalize and control the interaction range, we introduce one more
definition.

Definition 4 (Exponential Decay). The seed f of a function F is said to be of
class D(Cy, p) if there exist two positive constants Cy and p < 1 such that for any
centrally aligned component (") it holds

va(m)HSCf/”'Lm7 m:O""7N’
where ||-|| is a standard polynomial norm.*

Remark 5. If we are dealing with a Hamiltonian, Definition 4 encodes, when the
constant C'y does not depend on N, the short range of the interaction; this, together
with the translation invariance given by means of the cyclic symmetry constitutes
the extensivity of the Hamiltonian.

We can now focus on the harmonic part Hy of the Hamiltonian H. From (3.1),
Hjy can be written as the quadratic form

1 1
Hoy(z,y) = Ey-y-i-EAx-x (3.7)
where A is a circulant and symmetric matrix given by
A=T—er+7"). (3.8)

Here 7 = (7;;) is the matrix representing the cyclic permutation (3.3), i.e. with 7;; =
i j+1 (mod 2N+1) using the Kronecker’s delta notation. The following proposition

2Given a homogeneous polynomial f(z,y) = Z\jlﬂk\is ijkxjyk of degree s in z, y and a positive
radius R, we define the polynomial norm of f by ||f||r := R® Z\jl-‘-lk\zs |fj,k]; we often drop the
subscript R.
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reduces the quadratic part Hy of the Hamiltonian to the quadratic normal form
and preserves the extensivity of Hy.

Proposition 1. For every e € (O,%) the canonical linear transformation q =

A4 p = A=Y%y transforms the quadratic Hamiltonian Hy to the quadratic nor-
mal form

HO® = Hqo+ Zy, {Hq,Zo} =0, (3.9)

where Ho = hg and Zy = Cga are cyclically symmetric polynomials, with centrally
aligned seeds hq and (y of the form

Q
ha = 5(613 + 1) (3.10)
and
N
=3¢ & =bulgo(gm +q-m) + Po(pm +p-m)l.  (3.11)
m=1
Here Q and b, are defined by
1 N+1
- . — (ALl/2

Qi= 5 j;ij, b = (AY?) 1 i1, (3.12)

where w; are the frequencies of the normal modes of Hy. Moreover, there exists a

suitable positive constant C¢, such that each component C(()m) satisfies the exponen-
tial decay

1G5 < C, (26)™,
hence (o € D(Cq,, 2e).

Proof. We give here only few ideas to grasp the exponential decay of the all-
to-all interactions due to the linear transformation. After applying ¢ = AY%z,
p =A%y, we have

1

1
Hy = §pTA1/2p + §qTA1/2q. (3.13)

By defining T := 7+ 7', one can rewrite A'/? as

AV? = (- €1)'/? = (1/2) —€)'T".
e =3 ()9
In order to obtain the decomposition (3.9), we separate the diagonal part from the
off-diagonal part A'/?2 = Q T+ B and insert this decomposition into (3.13). The
exponential decay (2¢)™ comes from the observation that (Tl)Lm = 0 for all
0 <! < m and from the estimate [(T™), . ;| < 2™. One can restrict to consider
only the first row due to the circulant nature of all the matrices involved (for all

details see [18, Appendix 6.1.1]). O

1650015-14



Approzimation of small-amplitude weakly coupled oscillators

The following proposition shows how the linear transformation in Proposition
1 changes the quartic part H; of the Hamiltonian and preserves the extensivity
of Hl.

Proposition 2. Under the linear transformation in Proposition 1, the quartic part
Hy given in (3.1) is cyclically symmetric (Hy = h{) with a centrally aligned seed
given by
N
hy= > B, (3.14)
m=0

Moreover, there ezists a suitable positive constant Cp, such that each component
hgm) satisfies the exponential decay

1BS™] < Ch, (26)™,
hence hy € D(Ch,, 2€).

Proof. The proof of this proposition includes some technical steps, similar to those
in the proof of [30, Proposition 2] and [18, Lemma 3.4]. We only stress here that
there is no loss in the decay rate (2¢) between the seeds of Zy and H; thanks to
the different choice of alignment, as proven in [30, Lemma 5]. O

We can clarify the statements of Propositions 1 and 2 by saying that in a suitable
set of coordinates, the coupling part of the quadratic Hamiltonian Hy shows all-to-
all linear interactions, with an exponentially decaying strength with respect to the
distance between the sites. Such a linear transformation introduces similar all-to-all
interactions also in the quartic Hamiltonian Hy. Moreover, in the new coordinates
qj, the seed h; of the quartic term has the same exponential decay as the seed (g
of the quadratic term.

3.2. First-order nonlinear normal form transformation

By using Propositions 1 and 2, the Hamiltonian H in (3.1) is transformed into the
form

H=Hq+ Zy+ Hy. (315)

We are now ready to state the (first-order) normal form theorem. This first-order
theorem represents the easiest formulation of the more generic result [30, Theo-
rem 1]. The idea is to perform, by using the Lie transform algorithm explained in
[16], one normalizing step, provided € is small enough. Moreover, the normalizing
canonical transformation is well defined in a (small) neighborhood B> of the
origin, where p is sufficiently small.

Theorem 5. Consider the Hamiltonian H = hg +¢§ + hY with seeds hq, (o, 1,
in (3.10), (3.11), and (3.14). There exist positive v, €, < % and C. such that for
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every € € (0,¢,), there exists a generating function X1 = X of a Lie transform
such that T, HY) = H, where HY) is a cyclically symmetric function of the form

HWY = Ho + Zy+ Zy + PP, (3.16)

with 0 = {Hq, Zo} = {Hq, Z1}, whereas Zy = (Y is a polynomial of degree four
whose seed (1 is of class D(Cy,,,2€), and P®) is a remainder that includes terms of
degree equal or bigger than sixz. Moreover, if the smallness condition on the energy
B 1

C96(1+e)Cy’

is satisfied, then the following statements hold true:

p<py: (3.17)

(1) Xy defines an analytic canonical transformation on the domain B§p1/2 such
that

B%p1/2 C TXlB%plﬂ C Bp1/27 B%p1/2 C T;;llB%puz C Bp1/2.
Moreover, the deformation of the domain B%pl/Q is controlled by
z € Bz 2 = T, (2) — 2|| < 4*C,.p%/2, ||T§11(z) —z| < 44C.p%%. (3.18)

(2) The remainder is an analytic function on B%p1/2, and it is represented by a

series of cyclically symmetric homogeneous polynomials Hs(l) of degree 2s + 2

PA=3"H", HO =hM®  h)eD2CCh,V2). (3.19)
s=2

The interval (0,€,) with €, < % comes from the inequality

/30 \ (1 2¢)[1 - (26)7]
fle)= (64040) or !

(see for reference [31, formula (33)]), and the constants C, and v can be written as
4Cy,

C.= = (3.20)
3v(1 —2¢)[1 — (2¢)7]
and
1
7:29(1——>:>Q<7<29. 3.21
270 21
Since e is sufficiently smaller than %7 the constants C, is essentially independent of
€, i.e.
_ Ch,y
o-o(%)
which implies that the same holds true for the threshold p,. so that
2Q
(3.22)

P 30 I +e)
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3.3. Approximation with the dNLS equation

We apply here the normal form transformation of Theorem 5 in order to approxi-
mate the Cauchy problem 2 = {H, z} of the finite dKG equation (1.4) with a small
initial datum zg. Let us denote with K := Hq + Zy + Z; the normal form part of
the Hamiltonian H*) = K+ P in formula (3.16). Since Zy and Z; have centrally
aligned seeds with the exponential decay (see decompositions (3.11) and (3.14)),
we have

N
Zo=Y 2",z = (™)° (3.23)
m=1
and
N
n=3Y 2", 2= (m)e. (3.24)
m=0

Note that the expansion for Z; starts at m = 1, while Z; starts with m = 0. By
truncating the e expansion of each normal form term Z; at their leading orders, we
define the effective normal form Hamiltonian Keg as

Ket := Ho + Z" + 219 Kpes == K — Kegr. (3.25)

As already stressed in [30], the truncated normal form eg represents the Hamil-
tonian of the dNLS equation. In complex coordinates ¥; = (g; + ipj)/Vv/2, the
Hamiltonian K. reads as

3
Kew = (Q+200) 3 [5° =01 3 [jn — 0P+ 2> 1wl (3.26)
J J J

where by = O(e) < 0 is the same as in the expression (3.12) of Proposition 1. The
corresponding dNLS equation is

< aICeff 3
lth; = 95, Qj + b1 (Yj41 +¥j-1) + Z¢j|¢j|2a (3.27)
J
and it has the same structure as the dNLS equation (2.3).
We denote with z(t) the evolution of the dKG transformed Hamiltonian C+P (),
with z,(t) the evolution of the dNLS model K.g and consequently with §(¢) the
error

8(t) = 2(t) — za(t). (3.28)

The two time scales over which we control the error of the approximation are
given by

1

Ty=-, Tj:=—1In (—) (3.29)
P Kop  \p

where a € (0,1) is an arbitrary parameter, and ko = O(Cp,) is given in (3.43).

Similar definitions are used in (2.18) and (2.26), in the proof of Theorems 1 and 2.

Theorem 6. Let us take p fulfilling (3.17) and € € (0,¢.) as in Theorem 5. Let us
first consider the two independent parameters p and € in the regime €2 < p < e.
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Then, there exists a positive constant C independent of p and € such that for any
initial datum zo € Bz 172 with 60|l < p~1/2€2, the following holds true:

6] < Cp~ /%%, |t < To. (3.30)

Let us now consider the two independent parameters p and € in the regime €Tte <
p <€, where a € (0,1) is arbitrary. Then, there exists a positive constant C inde-
pendent of p and € such that for any initial datum zo € Bz /> with ||| < p 1262,
the following holds true:

15(8)]] < Cp~/27e, |t < T (3.31)

Remark 6. The upper bound for the error § given in (3.30) and (3.31) refers to the
time evolution of the normal form (3.26) in the transformed variables ), which are
near-identity deformations of the original variables (z,y). Since the transformation
T is Lipschitz, with a Lipschitz constant L of order L = O(1), the same bound
of the error holds also in the original coordinates. Thus, from the analytic point of
view, the nonlinear deformation of the variables does not affect the dependence of
the estimates on p and e: only the constant C is changed by the Lipschitz factor L.

Remark 7. The above estimates are equivalent, both in terms of error smallness
and time scale, to the ones obtained in Theorems 1 and 2, once the original variables
xj = pt/%¢; are recovered.

Remark 8. The requirement €2 < p on the time scale Ty is needed in order to
provide a meaningful approximation, which means that the error is much smaller
than the leading approximation z,(t)

18] < p~/2e* < p!/? ~ ||za(B)]]-
The same reason lies behind the requirement €T < p on the extended time
scale T{.

Before entering into the proof of Theorem 6, we need a further definition in
order to control the norm of vector fields. Given F' an extensive Hamiltonian with
seed f, we will make use of the notation X to indicate the associated Hamiltonian
vector field JVF, with J given by the standard Poisson structure. The Hamiltonian
vector field inherits, in a particular form, the cyclic symmetry. Indeed, it was proved
in [30, 31] that

Ou, F =70, F, 0,,F =10, F, j=-N,...,N. (3.32)

As a result, a possible (but not unique) choice for the seed of X is given by the
couple (Oy, F, =0y, F). This fact allows us to define in a reasonable and consistent
way the following norm

IXFI% = 1050 F |l g + 1050 F | - (3.33)

As is shown in [30, Proposition 1], the norm (3.33) allows us to control a natural
operator norm. Moreover, as is stated in [30, Lemma 4], if ' = f® with f of class
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52}

D(Cy, ), then HXFHR
the forthcoming estimates (3.38) and (3.41).

is controlled by Cf. Both these properties will be used in

Proof of Theorem 6. Following a standard approach, we first decompose the
Hamiltonian H = Hj, + Hy in its quadratic and quartic parts

Hy :=Ho+ Zy, Hy:=2Z,+P?,

so that Keg = Hy, + Hy — P® — Cpes. Correspondingly, the vector field is decom-
posed as Xy = Xp, + Xn. Denote the linear operator for Xy, by £. The equation
of motions for z(t) and z,(t) reads

2=Lz+ Xn(2),
(3.34)
Za = L2q + Xn(z4) — Res(2),
with Res(t) := Xpe) (2a(t)) + Xic,o. (2a(t))-
The error 0(t) defined by (3.28) satisfies the equation
6= L35+ [Xn(2a +0) — Xn(2a)] + Res(t), (3.35)

whose solution, with the initial value dy, is given by Duhamel formula
t
5(t) = €515 + Lt / =3[ Xy (20 + 0) — Xn(za) + Res(s)|ds.  (3.36)
0
Now, since {Hp,, Ho} = 0, one has that £ is an isometry. This allows to estimate

161 < ||50H+/0 (I X~ (za(s) +6(5)) = Xn(za(s))]l + [Res(s)[]ds. (3.37)

The second term in the right-hand side can be estimated with the definition of the
residual and using the information that z,(t) preserves the norm, as a consequence
of the conservation of Hgq

Ch, Cp®?
(1 - V262

[Ceop?€ + Chip*%e]
X, (2a(1))]] < :
[ Xkree (2a ()| < C 120

IXpe (za(9)] < C

(3.38)

where the two contributions in the second inequality come from the truncation of
Zy and Zp respectively. Thus, we obtain

1/2
IRes(s)]| < CO;"W[%@ + Chype + C, Cup?). (3.39)
On the other hand, if
18] < llzall ~ p*/2, (3.40)
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then the increment of the nonlinear field can be well approximated by
1 XN (2a(s) +6(5)) = Xn(za ()| < I X (Ca) IS
where
Co=2q+ A, Ae(0,1).
If the smallness condition (3.40) for ¢ holds, then ||C,|| ~ p*/?, which implies
I XN (2a(s) +6(s)) = Xn(za () < IX I, M10]]-
By using the decomposition X}, = X7, + X}, it is possible to obtain
Ch,
(1-vaep”
By inserting (3.39) and (3.41) into (3.37), one gets a typical Gronwall-like integral
inequality, which provides the time-dependent upper bound

XNl <Ci (3.41)

2
16(8)]| < e™oPt |8 || + Cp'/? [% +e+ C*p] (e"ort — 1)

< efort 22 4 Cpm 2 (eRort — 1) [ 4 pe + Clp?], (3.42)
where ¢ provides an upper bound for | X4 ||; in (3.41)

Ch,
01— vz
and C depends only on €., C¢y, Cp,. Then, the bound (3.30) follows from the
assumption p < e.

The bound (3.31) is obtained similarly, just replacing the time span 7 in the
above (3.42), which easily provides the factor p~® in front of the estimate. O

Ko ‘= C1 = O(Chl) (343)

3.4. Approximations with the generalized dNLS equation

The standard ANLS approximation is no more valid when €2 ~ p. Indeed, in such a
case, the contribution e2p~! coming from the truncation of the linear field Xz, in
(3.42) is of order one, hence the error d(¢) can be comparable with the approximation

za(t)
16(t)] < Cp/? ~ ||za(t)]] -

In such a regime, it is then necessary to include in the Hamiltonian KC.g at least
the term ZéQ), responsible for the next-nearest neighborhood linear interaction:

Kegt := Ho + Z" + 2% + 7. (3.44)

Following the same steps as in the proof of Theorem 6, it is possible to prove the
following result, which is fully equivalent to Theorems 3 and 4.
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Theorem 7. Let us take p fulfilling (3.17) and € € (0,¢€.) as in Theorem 5. Let us
first consider the two independent parameters p and € in the regime €3 < p < €2.
Then, there exists a positive constant C independent on p and € such that for any
initial datum zo € Bz /2 with 00| < p~ /263, the following holds true

I6(8)II < Cp~ V2%, i < To. (3.45)

Let us now consider the two independent parameters p and € in the regime €T <
p < €, where o € (O, %) is arbitrary. Then, there exists a positive constant C inde-
pendent of p and € such that for any initial datum zo € Bz 12 with 60| < p~1/2€3,
the following holds true:

I5(6)]| < Cp~H/27e%, |t < T (3.46)

The result of Theorem 7 yields the Hamiltonian for the generalized dNLS
equation:

Kegr = (4201 + 2b2) > [51> — b1 > [thj1 — 5]
J J
3
—b2 Y |Wja — Ul° + §Z|¢j|4’ (3.47)
j j

where by = O(e?) < 0 is the same as in the expression (3.12) of Proposition 1. The
corresponding generalized dNLS equation is

i) = Quj + by (Yj41 + Pj—1) + ba(vhjp2 + j2) + 2¢j|¢j|2, (3.48)

which has the same structure as the generalized dNLS equation (2.31). Indeed,
remembering that € in (3.48) also has an expansion in €, and that the time variable
is rescaled with € in (2.31), we can rewrite the right-hand side of the generalized
dNLS equation (2.31) as follows:

€ €
§aj + (aj41+aj-1)+ Z(aj+2 +aj_2).

This shows an € correction to the nearest neighbor coefficient, which in the normal
form approach is embedded in the e-dependence of €2, by, b and of the transformed
coordinates.

More generally, within the normal form approach, different regimes of param-
eters can be treated with no effort: once the requested scaling between € and p is
chosen, one easily derives the minimal, and also the optimal, number of terms in the
expansions of Zy and Z; to be included. The estimates follows as easily as before.
Here we give the estimates for a general choice of truncation:

-1 n—1
Ket = Ho+Y_ 25+ 27, (3.49)
j=1 =0
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where N > 1 > 2 and N > n > 1. The error term 0 is now estimated similarly to
(3.42) as follows:

1
501 < e ol + 2| S et Copl @ = 1) 122, nz
P

(3.50)
Hence one can deal with all the regimes and with the desired error precision in a
compact and flexible way. The extension to higher order terms in the nonlinearity
would require further steps of the normal form transformations, thus modifying
thresholds e, and p,, following the general version of [30, Theorem 5].

4. Applications of the dNLS Equation

We conclude the paper with a brief account of possible applications of the dNLS
equations (see (2.3) and (3.27)), and their generalizations (see (2.31) and (3.48)), in
the context of small-amplitude weakly coupled oscillators of the dKG equation (1.4).

Existence of Breathers. Breathers of the dKG equation (time-periodic solutions
localized on the lattice) can be constructed approximately by looking at the discrete
solitons of the ANLS equation (1.5) in the form a;(7) = A;e™*7, where Q € R\[-1,1]
is defined outside the spectral band of the linearized dNLS equation and A € ¢?(R)
is time-independent.

The limit ¢ — 0 is referred to as the anti-continuum limit of the dKG equa-
tion (1.4), when the breathers at a fixed energy are continued uniquely from the
limiting configurations supported on few lattice sites [27, 33]. Compared to the
anti-continuum limit, the dNLS approximation is very different, because the dis-
crete solitons of the dNLS equation (1.5) are not nearly compactly supported due to
the fact that the dNLS equation (1.5) has no small parameter. Indeed, the continua-
tion arguments in [27, 33] are no longer valid in the small-amplitude approximation,
when the breather period T is defined near the linear limit 27, because the inverse
linearized operators become unbounded in the linear oscillator limit as T" — 27. As
a result, approximate breathers obtained from Theorem 1 are no longer compactly
supported.

The approximation of Theorem 1 and the construction of truly periodic solutions
to the dKG equation (1.4) can be extended to all times. To do so, we can use
the Fourier series in time and eliminate all but the first Fourier harmonic by a
Lyapunov—Schmidt reduction procedure. Then, the components of the first Fourier
component satisfies a stationary dNLS-type equation, where the dNLS equation
(1.5) is the leading equation. In this way, similarly to the work [34], one can justify
the continuation of discrete solitons of the dNLS equation (1.5) as approximations
of the truly periodic breathers in the dKG equation (1.4).

Within the same scheme of Lyapunov—Schmidt decomposition, another equiva-
lent route to prove the existence of breathers in the dKG equation (1.4) is obtained
by means of Theorem 5. Indeed, the discrete solitons of the dNLS equation (1.5) can
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be characterized as constrained critical points of the energy, which are continued,
under non-degeneracy conditions, to critical points of the true energy of the dKG
equation (1.4), see [31] for details.

Spectral Stability of Breathers. The spectral stability of breathers in the dKG
equation (1.4) can be related to the spectral stability of solitons in the dNLS equa-
tion (1.5). By Theorem 1 with p = €, we are not able to relate stable or unstable
eigenvalues of the dNLS solitons with the Floquet multipliers of the dKG breathers,
because the error term also grows exponentially at the time scale O(e~!) (the same
problem is discussed in [12, 24] in the context of stability of the travelling waves
in FPU lattices). However, by Theorem 2 with p = ¢, the approximation result is
extended to the time scale O(e~!|log(e)|). Therefore, we can conclude that all the
unstable eigenvalues of the dNLS solitons persist as unstable Floquet multipliers of
the dKG breathers within the O(e) distance from the unit circle.

If the unstable eigenvalues of the dNLS solitons do not exist, we only obtain
approximate spectral stability of the dKG breathers, because the unstable Floquet
multipliers of the dKG breathers may still exist on the distance smaller than O(¢) to
the unit circle. On the other hand, if the spectrally stable dNLS solitons are known
to have internal modes [32], then the Floquet multipliers of the dKG breathers
persist on the unit circle by known symmetries of the Floquet multipliers [33].

Long Time Stability of Breathers. By means of the normal form approach, it is
possible to prove the long time stability result for single-site (fundamental) breather
solutions of the dKG equation (1.4). Indeed, the variational characterization of the
existence problem for such breathers in the normal form essentially implies an
orbital stability in the normal form, which is translated into a long time stability
in the original dKG equation [31].

In the case of multi-site dNLS solitons, nonlinear instability is induced by
isolated internal modes of negative Krein signature, which are coupled with the
continuous spectrum by the nonlinearity [23]. By using the extended time scale
O(e~log(€)|) of Theorem 2 with p = €, we can predict persistence of this insta-
bility for small-amplitude dKG breathers. This nonlinear instability was recently
confirmed for multi-site dKG breathers in [11].

Also quasi-periodic localized solutions were constructed for the dANLS equation,
in the situation when the internal mode of the dNLS soliton occurs on the other
side of the spectral band of the continuous spectrum [10, 28]. These solutions cor-
respond approximately to quasi-periodic dKG breathers. It is still an open question
to consider true quasi-periodic breather solutions of the dKG equation (1.4).
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