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Two families of periodic travelling waves exist in
the focusing modified Korteweg—de Vries equation.
Spectral stability of these waveforms with respect
to co-periodic perturbations of the same period
has been previously explored by using spectral
analysis and variational formulation. By using tools
of integrability, such as a relation between squared
eigenfunctions of the Lax pair and eigenfunctions
of the linearized stability problem, we revisit the
spectral stability of these waveforms with respect
to perturbations of arbitrary periods. In agreement
with previous works, we find that one family is
spectrally stable for all parameter configurations,
whereas the other family is spectrally unstable for
all parameter configurations. We show that the onset
of the co-periodic instability for the latter family
changes the instability bands from figure-8 (crossing
at the imaginary axis) into figure-co (crossing at the
real axis).

1. Introduction

Instabilities of steadily propagating waves on a fluid
surface, called Stokes waves, have been recently
explored in many computational details due to advanced
numerical algorithms with high precision and accuracy
[1-6]. As the Stokes wave gets a larger height and
higher steepness, the spectral problem for co-periodic
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bifurcate from the origin due to coalescence of pairs of purely imaginary eigenvalues and splitting
into pairs of real eigenvalues [4]. At the same time, the spectral problem for perturbations of
arbitrary periods display more complicated patterns of instability bands with multiple loops
on the purely imaginary and real axes [3,5]. The figure-8 instability (crossing at the imaginary
axis), which is standard in the limit of small amplitudes [7-10] transforms into the figure-oco
instability (crossing at the real axis) with further exchanges between co-periodic and anti-periodic
eigenvalues as eigenvalues of the dominant instability [1,2]. It was conjectured that the recurrent
exchange between these patterns is universal near the limit to the periodic wave with the maximal
height and occurs in other wave models such as the Whitham equation [11].

This motivating picture related to the Stokes waves in Euler’s equations calls for a more
systematic investigation of the spectral instability of periodic travelling waves in the basic fluid
models such as the focusing modified Korteweg—de Vries (mKdV) equation. The spectral stability
of periodic travelling waves in this model has been studied in many details by using tools
of integrability [12-18] and functional analysis [19-26]. The purpose of this work is to give a
complete picture of the spectral stability of the general periodic travelling waves to perturbations
of all periods and to show that the onset of the co-periodic instability changes the instability bands
from figure-8 to figure-co.

We will describe the state-of-the-art and present the main results by using the standard form
of the focusing mKdV equation,

Ut 4 613Uy + gy =0, (1.1)
where subscripts x and ¢ represent the partial derivatives in the spatial and temporal variables,
respectively, and where u = u(x, t) is real. The initial-value problem for the mKdV equation (1.1)
is globally well-posed in the energy space H! both on R and in the periodic domain [27]. It was
further proven in [28] that the global well-posedness can be extended to the Sobolev spaces of
low regularity in H® for s > % on R and H® for s > % in the periodic domain. By using integrability,
the global well-posedness of the mKdV equation was extended to H® for s > —% on R [29].

The travelling wave of the mKdV equation (1.1) with the spatial profile U(x) : R — R is given by
u(x, t) = U(x — ct), where c is the wave speed. The wave profile U satisfies the third-order equation

u” +6U?U —cl' =0, (1.2)
which is integrated into the second-order equation
U +2u° —cu=>b (1.3)

with the integration constant b. Two particular waveforms for the periodic travelling waves were
studied in many details:

Ux)=dn(x, k), c=2—-k*, b=0 (1.4)

and

Ux)=ken(x, k), c=2k*>—1, b=0, (1.5)

where k is elliptic modulus, k € (0, 1), and the Jacobi elliptic functions have been used. We shall
refer to equations (1.4) and (1.5) as the dnoidal and cnoidal waves, respectively. With the use of
the scaling transformation

u(x, ) > aulax, ¢3), a>0
and the translational symmetries
u(x, t) = u(x +xo,t +to), xo,toeR,

these two waveforms extend to all possible travelling periodic wave solutions of the second-order
equation (1.3) with b=0.
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It was shown in [19,20,23,26] that

— the dnoidal wave (1.4) is spectrally stable to co-periodic perturbations for all k € (0,1),
and

— the cnoidal wave (1.5) is spectrally stable to co-periodic perturbations for k € (0, k) and
spectrally unstable for k € (k, 1), where k, ~ 0.909.

Furthermore, it was shown in [21,22] that

— the dnoidal wave (1.4) is modulationally stable to long periods for all k € (0,1), and
— the cnoidal wave (1.5) is modulationally unstable to long periods for all k € (0, 1).

Regarding the periodic travelling waves with b#0, stability of one particular solution
was proven in [30]. Two continuous families exist for b#0 [13,15] which extend the dnoidal
and cnoidal waves (equations (1.4) and (1.5)), see equations (2.4) and (2.6). Stability of these
waveforms with respect to co-periodic perturbations has been systematically studied in [24,25]
by using minimization of the quadratic form

?{ [(1)? + cu®]dx
subject to fixed mean value ¢ udx =m and the fixed L* norm ) u* dx =1 (see review in [31]).

— Under the zero-mean constraint, m =0, the cnoidal wave (1.5) is a minimizer of
the constrained variational problem for ke (0,ks) and a saddle point for ke (ky, 1)
with two symmetric minimizers bifurcating at k=k, in the supercritical pitchfork
bifurcation [25].

— Under a fixed non-zero mean value, m # 0, the imperfect pitchfork bifurcation breaks one
branch of global minimizers of the constrained variational problem away from the other
two branches, one of which is a saddle point and the other one is a local minimizer [24].
The local and global minimizers are spectrally stable to co-periodic perturbations and the
saddle points are spectrally unstable for all parameter values [24]. Furthermore, the local
and global minimizers are realized with both solution waveforms (equations (2.4) and
(2.6)), whereas the saddle points are only realized by the waveform (2.6) [24].

Next, we present the main results of this work in relation to the state-of-the-art.

— First, we show by using the relation between squared eigenfunctions satisfying the Lax
pair and eigenfunctions of the spectral stability problem that the solution waveform (2.4)
generalizing dnoidal waves (1.4) is spectrally stable for all parameter configurations and
the solution waveform (2.6) generalizing cnoidal waves (1.5) is spectrally unstable for all
parameter configurations. This agrees with theorem 2 in [21] where modulational stability
of the solution waveforms was studied to perturbations of long periods.

— Second, we show that the spectral instability of the solution waveform (2.6) to co-periodic
perturbations triggers a transformation of figure-8 before the co-periodic instability to
figure-co after the co-periodic instability. This conclusion agrees with the modulational
stability theory in [21] and numerical approximations (see fig. 1 in [21]) but has not
been described in precise detail. The analytical study of the co-periodic stability in
[23] was accompanied by numerical approximations (see fig. 1 in [23]), which showed
some transformations of figure-8 before figure-co was attained. The stability spectrum
of the dnoidal and cnoidal waves was computed numerically in [14] for just one value
of ke (0,1), for which only figure-8 was obtained and the transformation to figure-oo
was missed.
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Figure 1. The Lax and stability spectra for the cnoidal wave (1.5) with different values of k. (a)—(c) and (g)—(i): Lax spectrum in
A-plane. (d)—(f) and (j)—(1): stability spectrum in A-plane.

The main phenomenon of the transformation of figure-8 to figure-co is shown in figure 1 for
the cnoidal wave (1.5) with different values of k € (0,1). As k crosses k, ~0.909, the co-periodic
instability arises (the corresponding eigenvalues are shown by red dots on panels (f) and (j)—(1)).
This leads to the transformation of the figure-8 (panels (d) and (e)) into a propeller (panel (f)),
which becomes a complicated figure with two loops extended along the horizontal direction and
four loops extended in the vertical direction (panels (j) and (k)). Finally, the four loops disappear
and the figure-oc is formed (panel (1)). The point k =k, corresponds to the marginal case when the
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two bands of the Lax spectrum cross at the origin, separating their crossing at the pure imaginary
axis for k <k, (panels (a) and (b)) and at the real axis for k > k, (panels (c) and (g)—(i)). Four
endpoints of the two complex bands of the Lax spectrum are shown by the magenta crosses,
these are roots of the characteristic polynomial for the periodic travelling waves, see equation
(3.3).

Our analytical study and numerical computations of the spectral stability of the periodic
travelling waves of the mKdV equation (1.1) rely on a relation between squared eigenfunctions
satisfying the Lax pair and eigenfunctions of the spectral stability problem, see equation (3.5).
The method of squared eigenfunctions was explored in a similar context of stability of periodic
travelling waves in various integrable models in [32-35]. The spectral stability problem can be
solved due to separation of variables and this has been explored for integrable models in [36-39],
see also [40,41] for the cases where the spectral stability of periodic travelling waves cannot be
studied by separation of variables.

It is interesting to emphasize that the Lax spectrum for the cnoidal wave (1.5) of the focusing
mKdV equation (1.1) is identical to that of the cnoidal wave solution of the focusing NLS equation
[33,38]. The spectral stability spectrum is, however, very different since the stability spectrum
of the cnoidal waves in the focusing NLS equation only features the figure-8 instability [33,38].
Although transformations of the instability bands for Stokes waves in Euler’s equations are more
complicated than the one in figure 1, see [1,2], the main transformation of figure-8 into figure-
oo due to the co-periodic instability is well captured by the wave model of the focusing mKdV
equation.

The paper is organized as follows. Section 2 presents the waveforms for the periodic travelling
waves of the mKdV equation (1.1). Section 3 characterizes the periodic travelling waves by using
the Lax pair and gives a relation between the squared eigenfunctions of the Lax pair and the
eigenfunctions of the linearized mKdV equation. Section 4 describes the analytical results on
the location of the Lax and stability spectra for the two waveforms of the periodic travelling
waves. Section 5 contains outcomes of the numerical computations based on a robust numerical
algorithm for the approximation of the Lax spectrum. Section 6 gives a summary of our findings.

2. Waveforms for the periodic travelling waves
Integrating the second-order equation (1.3), we obtain the first-order invariant
(U7 +Qu) =4, (2.1)

where Q(U) := U* — cU? — 2bU and d is a constant. Two particular waveforms generalizing the
dnoidal and cnoidal waves (equations (1.4) and (1.5)) are given in terms of the four roots
{u1, up, uz.14} of Q(u) =d. The four roots satisfy the relations

Uy +up +us+ug =0,

Uy + uruz + ujlg + Uguz + Uplig + Uzl = —¢,

(2.2)
UqUpUs + Uiy + Uzl + upuziy = 2b,
U tpuzy = —d,
which follow by expanding
Q) —d = (u — u1)(u — up)(u — uz)(u — ug) = u* — cu® — 2bu — d. (2.3)

The following proposition states the two waveforms for the periodic travelling waves, see also
[13].

Proposition 2.1. If the roots {uy, up, uz.us} are real and ordered as ug <uz <up <uy, then the first-
order invariant (2.1) is satisfied by

(11 — ug)(up — ug)

M) =y + (2 — ug) + (u1 — up)sn?(vx, k)’

(2.4)
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where

G =) — ) and k= Y1 u2)s —us) (2.5)

'T2 (1 — us)(uz — )

If {u1, up} are real and {uz.uy} are complex-conjugate such that up <uj and uz =14 =y + in with n >0,
then the first-order invariant (2.1) is satisfied by

(u1 — uz)(1 — en(ux, k))

He) =12+ o 6~ Den(ur, 0’ 26)
where
s Y-y +n?
Vi =y +n?
=100 = )2 + P2l — )2 + 2], 2.7)
21 (1 —y)2—y)+1* '
VI =y + 0?1l — v)* +n?]
Proof. We rewrite equations (2.1) and (2.3) in the form
(U + (U = u)(U — u2)(U — u3)(U — ug) = 0.
To verify equations (2.4) and (2.5) for ug < uz <up < uj, we substitute
_ (u1 — ug)(uz — ug)
U(x)=ug + T
and obtain
(V') + [y — ug) — V][(u2 — ug) = V(11 — ug) iz — ug) — (u3 — 1) V]=0.
After substituting V(x) = (uz — ug) + (u1 — u2)W(x), we obtain
(W)> =W = W)[(u1 — uz)(uz — ug) — (u1 — uz)(uz — ug) WI. (2.8)

The elliptic function W(x) =sn?(vx, k) satisfies equation (2.8) if v and k are defined by equation
(2.5).

To verify equations (2.6) and (2.7) for up <uq and uz =14 =y + in with n>0, we rewrite
equations (2.1) and (2.3) in the form

U2 + (U — u)(U — uwp)[(U — y)* +n*]=0.

Substituting
_ (up —u1)
U(x)=uq + Ve
yields
(V2 + A =Wy — y)V +uz — ug +n* V] =0. (2.9)
The elliptic function
V) =1+ 1+ en(ux, k)
N 1 —en(ux, k)
satisfies equation (2.9) if §, v and k are defined by equation (2.7). |

Remark 2.2. For periodic solution (2.4), exchanging uj <> u3 and up <> u4 yields another
periodic solution:
(ug — ug)(ug — uq)

Uex) =z + (g — up) + (u3 — ug)sn?(vx; k)

(2.10)

with the same definition of v and k.
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Figure 2. (a) Phase portrait in the phase plane (U, U’) for b = 0.8 and ¢ = 4. (b) Levels of d at the plot of Q(U).

Remark 2.3. The periodic solutions U(x) in the form of equations (2.4) and (2.10) are located in
the intervals [up, u1] and [ug, us], respectively. In both cases, they have the period L = 2K(k)v‘1,
where K(k) is the complete elliptic integral of the first type. The periodic solution U(x) in the form
of equation (2.6) is located in the interval [y, 111] and has the period L = 4K (k)L

To illustrate the two waveforms in proposition 2.1, we plot the level curves of
HU,U') = (U')* + Q)

on the phase plane (U, U’) € R2. Figure 2a shows a typical phase portrait in the case ¢ > 0 and b e
(—«/2? /33, V23 /3+/3), where the saddle point is squeezed between two centre points shown
by black crosses. The level curves on the phase plane (U, U’) correspond to the region of U, where
Q(U) <d, shown in figure 2b.

For d € (d1,d>) and d € (d3, 00), only two real roots of Q(U) = d exist and the solution waveform
is given by equation (2.6). For d € (d2,d3), four real roots of Q(U)=d exist and the solution
waveforms are given by equations (2.4) and (2.10). In the limiting cases, the solution waveforms
degenerate as follows.

— If d =dj, then 11 = up in equation (2.6) and we have the constant solution U(x) = uy;
— If d =dy, then u3 = u4 in equation (2.4) and we have the trigonometric waveform for the
periodic solution:

U(x)=u3 + (11 — u3)(up — u3) and v= 1\/(ul — uz)(up — us).

(up — u3) + (11 — ) sin®(vx) 2

In addition, we have the constant solution U(x) = u3 from equation (2.10); and
— If d =dj, then either uy = u3 in equation (2.4) or =0 and uy <y < uj in equation (2.6).
The two cases give two hyperbolic waveforms for the solitary wave solutions:

U(x) = ug + (11 — ua)(atz — 1) v= %v (u1 — up)(u — ug)

(ug — ug) + (U1 — ug) tanhz(vx)l

and
(u1 — ug)(ug — uy)(cosh(2vx) — 1)

U(x) = ua + (u1 — ug) cosh(2vx) + (w1 — 2up + uy)

(11 — ug)(uz — ug) tanh®(vx)
(11 — u2) + (2 — g) tanh*(vx)”
where we have relabelled u — 1y and y — up = u3 in the second solution compared to

equation (2.6) and transformed it with & = 2v to the form similar to the first solution. In
addition, we have the constant solution U(x) = uj from equation (2.10).

=u4+
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3. Lax spectrum for the periodic travelling waves

The mKdV equation (1.1) is a compatibility condition of the following system of the linear
equations [42] for ¥ € C2:

Wx = L(M, )»)W/
(3.1)
l//t = M(M, )‘)1/,/
where
A u
L(u,2) = ( —u - )
and
—433 — 2 — 422y — 20Uy — 218 — Uy
M, 2) = ( 4320 — 20y + 215 + gy 4)3 4+ 252 ‘

Solutions of the linear equations (3.1) for the travelling waves of the mKdV equation (1.1) are
related to solutions of the linearized mKdV equation at the travelling waves. These relations are
well known (e.g. [14]) and are reproduced here for the sake of transparency.

Let u(x, t) = U(x — ct) be the travelling wave solution of the mKdV equation (1.1). Then the
linear system (3.1) enjoys the separation of variables in the form v (x,t) = ¥ (x — ct)e®?t, with & e
C? and £ € C found from the linear system

' =LU,NY,

(3.2)
QY =[M@U, 1) + cL(U, M)]¥.
The following proposition gives the admissible values of £2.
Proposition 3.1. The admissible values of $2 are defined by the characteristic polynomial
P(r) =161° — 8ca* + ( + 4d)A? — b? (3.3)

as 2 = +,/P()).

Proof. The second equation in system (3.2) shows that §2 is an eigenvalue of the following
matrix

A —4)3 —20U2 + ca —(@A2U +2UB + U” — cU +22U)
T\ U4 2uB + U - cU -2 4)3 +20U2 — e '

Since the trace of A is zero, 2% = P(1) := det(A), which is expanded in powers of A as follows:
P(r) =161° — 8ca* — (12U* 4 8UU" — 4cU? — 4(U')? — A)A> — QUE + U” — cl)?.
By using equations (1.3) and (2.1), we rewrite P(1) in the form (3.3). |

We define the Lax spectrum of the periodic travelling waves as the set of admissible values of A
in the spectral problem ¥’ = L(U, A)¥, for which & € L*(R, C?). By Floquet theorem, if U(x + L) =
U(x) is L-periodic, then the bounded eigenfunction ¥ is quasi-periodic as ¥ (x + L) = ¥ (x) elrl
with p € [-m/L, /L] for the values of A defined in the continuous bands of the Lax spectrum.

To relate the Lax spectrum with the stability spectrum, we define the linearization of the mKdV
equation (1.1) at the periodic travelling waves with the profile U. By using u(x, t) = U(x — ct) +
u(x — ct)ert and linearizing at u, we obtain the spectral stability problem in the form

Au+u” + 6(Uu) — cu’ =0. (3.4)

The stability spectrum of the periodic travelling waves is defined as the set of admissible values
of A in the spectral stability problem (3.4), for which u € L*(R, C). By the same Floquet theorem,
if U(x + L) = U(x) is L-periodic, then the bounded eigenfunction u is quasi-periodic as u(x + L) =
u(x) et with 6 € [-n/L, /L] for the values of A defined in the continuous bands of the stability
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spectrum. The bands of A in the stability spectrum are related to the bands of A in the Lax
spectrum due to the squared eigenfunction relation [14].

The following proposition gives the relation between eigenfunctions of the spectral stability
problem (3.4) and the squared eigenfunctions of the linear system (3.2).

Proposition 3.2. Let X C C be the Lax spectrum and ¥ = (p,q)" € L®(R, C?) be the eigenfunction of
the linear system (3.2) for an admissible value of . € X. Then, u:= p*> — g> € L®(R, C) is the eigenfunction
of the spectral stability problem (3.4) with

A =22 =+42,/P(%). (3.5)
Proof. Given that ¥ = (p,q)", we rewrite ¥’ = L(U, \)¥ into
P =xrp+Ug,
q ==Up—2q,

from which we obtain
p// :)\.p/ + u/q+ uq/

=22p+Uq—UPp,
q// —_UP-— up/ _ )\q/
=% —UPq—Up

and
p/// — )\Zp/ + u//q + u/q/ _ Zuu/p _ uzp/

=13p+22Ug 4+ U"q — 3UU'p — AU'g — AUPp — U,
q/// _ )\Zq/ _ u//p _ u/p/ _ ZUU’q _ uzq/
=—23g—22Up — U'p — 3Ul'q — »U'p + AU2q + U3p.
This yields with explicit computations:
(pZ)W — zpp/// + 6p/p//
—8)»32 2 fy 2.2 3 12 1,2 1/
=817p" + 8A°Upq + 4AU'pg — 81U 8U’pq + 6UU g — 6UU'p” + 2U pq

and

2)/// " 10

=2pp" +opp
= 82347 — 8)2Upq + 4.U'pq + 81U>g* + 8Uspq — 6UU'¢* + 6UU'p? — 2U"pg.

(g

Combining with the second equation of system (3.2), we obtain
(7?)" + 12UU'p? + 6P (%) — c(p?)
=8)3p? + 832 Upq + 41.U'pq + 4AUp? + 4Upq + 2U"pg + 6UU'q* + 6UU'p?

=—20p* + 6UU' (P* + ¢°)
and
()" +12UU'g* + 6L () - c(g?)
= —8)3g% — 8)2Upq + 4rU'pq — 41U>q* — 4UPpq — 2U"pg + 6UU'g* + 6L p?
=—22¢% + 6UU' (> + 47,
which verify that

W+ 1200w + 6U% — af = —20u,

foru:= p2 — qz. This equation is equivalent to (3.4) with A =252, whereas the relation £2 = 4,/P(%)
is established in proposition 3.1. |
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4. Lax and stability spectra: analytical results

Although the exact location of the Lax spectrum for the periodic travelling waves is not known,
the symmetry of the Lax spectrum with respect to reflection about A =0 and about the real axis
follow the symmetry of L(u, 1) in the linear system (3.1). The following proposition states these
properties of the Lax spectrum.

Proposition 4.1. Let A €C be an eigenvalue of the spectral problem v =L(u, )y with the
eigenfunction ¥ = (p, q)T € L®°(R, C2). Then, —x is also an eigenvalue with the eigenfunction ¢ =
(g, —p)T € L®(R, C?). Moreover, if » ¢ R, then i is also an eigenvalue with the eigenfunction ¥ = (p,§)" €
L®(R, C?).

Proof. We rewrite vy = L(u, 1)y in the form:

px=Ap +uq, }
Gx = —up — Aq.
This implies
gx =(=2)q + ”(—P)/}
—Px=—Ap —uq,
so that ¢ := (g, —p)” is also a solution of v, = L(u, A)y with eigenvalue —A. Furthermore, taking
the complex-conjugate transform yields
Px=Ap+ g, }
s = —i1p — 13
Since u =1 and A # A, then ¥ := (p, Q)T is also a solution of ¥y = L(u, A){ with eigenvalue A. |
Roots of the characteristic polynomial P(A) in equation (3.3) can be enumerated as
{11, £Ap, £A3). It was found in [43-46] that roots of P(A) are related to roots {uq,up, us.uy} of

Q(u) =d in equation (2.1). These relations were verified for the mKdV equation in [13] with a
direct proof, hence we state the relations without further details:

b= g b ), o= (b, ds= 5w+ u) @
It was shown in [13] that spectral bands of the Lax spectrum for the periodic travelling waves
outside iR are connected between the roots {#\1, £Ay, £A3}. In the next two theorems, we derive
the stability criterion for the waveform (2.4) and the instability criterion for the waveform (2.6) in
the spectral stability problem (3.4). It relies on the location of the spectral bands between the roots
of P(1) in addition to the spectral bands on iR, which is assumed here and verified numerically in
§5, as well as the squared eigenfunction relation of proposition 3.2.

Theorem 4.2. For the waveform (2.4) of proposition 2.1, assume that the Lax spectrum is located on
R U [=A1, =22l U[=lA3], [A3[]1 U [A2, 21]. (4.2)
Then the stability spectrum is iR.

Proof. For the waveform (2.4) of proposition 2.1, the roots {u1, up, u3.us} of Q(u) =d are real and
ordered as u4 <uz <up <uj. By (4.1), the roots {11, +A2, £A3} of P(A) are real and ordered as
A3 < X2 < A1. Moreover, due to the first relation in (2.2), we have uy + uz = —uq — uyg. i up + uz <
0, then |up + u3| =uy + ug <uq + uz, which proves that |Az| <y even if A3 < 0. Hence, we have
0<|A3] <Ap <Aq.
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For A € iR in the Lax spectrum (4.2), we rewrite the polynomial P(A) in the form:
P() =16(2% — 23) (W2 = 23) (W2 —23)
= —16(1A1% + A (A + A1 + 2).

Since P(A) <0, we have A==2,/P(A)€iR by (3.5). Moreover, lim— P(1)=—o00 and
lim; o P() = —16222323 so that

(=00, =81122|A3]] U [8A1A2|A3], 00)i

belongs to the stability spectrum.
For & € [-A1, —A2] U [—|A3], [A3]] U [A2, A1] in the Lax spectrum (4.2), we have P(1) <0 so that
A ==£2,/P(}) €iR by (3.5). Moreover, limj; |-, 5, P(A) =0 so that

[—8A122]A3], 8A122]A3]]i
also belongs to the stability spectrum. Hence, the image of A =+2,/P(%) covers all iR. |

Remark 4.3. The parts of the Lax spectrum (4.2) for A € [-11, —A2] U [A2, 21] cover a subset of iR
for the second time. Regardless, the periodic travelling wave with the waveform (2.4) is classified
as spectrally stable.

Theorem 4.4. For the waveform (2.6) of proposition 2.1, assume that the Lax spectrum is located on
RU =M TV Z 0, (4.3)

where X is the spectral band connecting two complex roots in the set {£Xp, =13} and X_ is the reflection
of Xy about A =0. Then the stability spectrum is the union of iR and the spectral bands which are not
contained in iR and are symmetric about A =0.

Proof. For the waveform (2.6) of proposition 2.1, the roots {ug, 12} of Q(u)=d are real and
ordered as up <uj, whereas the roots {u3z, 14} are complex-conjugate with 13 =14 =y + in and
n>0. By (4.1), the roots {#A1} of P(1) are real, whereas the roots {£A,£A3} represent a
complex-conjugate quadruplet since

1 1 1 -
3= 5z +ug)=—5(un +ug)=—5 (1 +i3) =1,
due to the first relation in (2.2). Since A» = —A3, we can rewrite P(1) in the form:
P(1) =16(2 = 23)[(A2 — Re(33))? + (Im(23))?].

For 1 €iR in the Lax spectrum (4.3), we have P(1) <0, and since lim;|— o P(A) = —0c and
lim; o P(x) = —16122313, we have by A = +2,/P(2) that

(—00, =8IA1 1142121 U [8IA1]1A2]?, 00)i

belongs to the stability spectrum.
For A € [—|A1],[A1]] in the Lax spectrum (4.3), we have P(1) <0 and since limj|—5,] P(1) =0,
we have by A ==+2,/P(3) that
(81211221, 81211221 i

also belongs to the stability spectrum. Hence, the image of A = :EZ\/W covers all iR.

It remains to prove that the image of A = iZ\/m for » € X4 in the Lax spectrum (4.3) is not
contained in iR. Since X_ is a reflection of ¥} about A =0 and A =0 if A =+, or A ==+23, the
image of A ==2,/P() for » € X_ is a reflection of the image of A ==42,/P(1) for 1 € X about
A =0, so that the spectral bands are not contained in /R and are symmetric about A = 0.

Let A € 2. Owing to symmetries between {£21,, +20}, we may have only four possibilities, for
each we prove that there exists A € Xy such that A =+2,/P(1) ¢ iR.

— X, connects A and i, and crosses R outside the segment [0, |A1]]. For 2o e ¥4 NR,
P(xp) > 0 so that A =+2,/P(x9) € R;
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— X connects A, and ; and crosses R inside the segment (0, |A1]]. £+ and R intersect
perpendicularly at Ag € Xy N R due to the symmetry of Lax spectrum in proposition 4.1
and P(%g) < 0. Hence, thereis » € X such that A — 4¢| is small and |Re(A — Ag)| < [Im(1)].
Since P'(Ao) € R, we have Re(P(1)) <0 and Im(P(1)) # 0 for this A so that A = :tZ\/m ¢
iR;

— X, connects A» and 0 but does not intersect (R U iR)\{0}. Since P(0) <0, P'(0) =0, and
P’(0) e R, we have Re(P(1)) <0 and Im(P(%)) #0 for every A € ¥y with small |A| and
Re(A)Im(A) #0 so that A = izm ¢ iR; and

— X connects Ay and —Ai; and crosses iR. X and iR intersect perpendicularly at Ao €
24+ NiR due to the symmetry of Lax spectrum in proposition 4.1 and P(1g) < 0. Hence,
there is A € X1 such that |A — Ag| is small and [Im(A — A¢)| < |Re(1)|. Since P'(1g) € iR, we
have Re(P(%)) < 0 and Im(P(1)) # 0 for this A so that A = +2,/P(1) ¢ iR.

The list of four possibilities above is complete. n

5. Lax and stability spectra: numerical results

We use the Fourier collocation method, see [47, Chapter 2, p.45], to approximate Lax spectrum
of ¥/ = L(U, »)¥ numerically for the travelling waves with the periodic profile U. This numerical
method has been used in our previous work [39]. For every 4 in the Lax spectrum, the stability
spectrum is obtained from A ==+2,/P(1) as in equation (3.5). The numerical results verify the
assumptions of theorems 4.2 and 4.4 and illustrate their conclusions.

(@) Waveform (2.4)

We take four real roots {11, up, us, s} of Q1) = d in the particular setting of u1 =1, u» =0.5,u3 =0,
and uy = —u1 — up — uz = —1.5. The Lax spectrum is shown in figure 3a in agreement with (4.2),
where the magenta crosses represent the roots of P(1). The stability spectrum shown in figure 3b
is equivalent to iR in agreement with theorem 4.2.

(b) Waveform (2.6)

We take two real roots of Q(1) =d as u; =1 and up =0.2 and the two complex-conjugate roots
as uz =il4 = —0.6 4 0.6i so that uq + up 4+ uz + ug = 0. The Lax spectrum is shown in figure 4a in
agreement with (4.3). The stability spectrum is shown in figure 4b in agreement with theorem 4.4.
The complex bands Y. in (4.3) are connected across iR in the Lax spectrum so that ¥_ = ¥ The
stability spectrum is a standard figure-8 instability band.

For a different set of parameter values, the complex bands X in (4.3) are connected across R
in the Lax spectrum so that ¥_ = — X This is illustrated in figure 5 for the choice of u3 =1, up =
—0.2, and uz =1y = —0.4 + 0.2i. Nevertheless, the stability spectrum is still a standard figure-8
instability band.

At first glance, readers may get the impression that the cascade of instabilities for the cnoidal
wave (1.5) shown in figure 1 is not observed for the periodic waveform (2.6). However, this is just
because the two parameter configurations in figures 4 and 5 do not represent a general picture.

To unfold the cascade of instability bifurcations for the periodic waveform (2.6), we
parameterize the roots of Q(u) = d with parameters « € (0, 1) and € € (0, 2«) as

U1 =k, Up=—K+E¢, y:—%, n=+v1—«2

The periodic waveform (2.6) becomes

(=2¢ +€)(1 — en(ux; k)

U(x) =« + 1468+ (8 — Den(ux; k)’

(5.1)
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Figure 3. Numerically computed Lax and stability spectra for the periodic solution with the profile (2.4) for u; =1, u, = 0.5,
u3 = 0,and ug = —1.5. (a) Lax spectrum in A-plane. (b) Stability spectrum in A-plane.
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Figure 4. Numerically computed Lax and stability spectra for the periodic solution with the profile (2.6) foru; =1,u;, = 0.2,
and u3 = uy = —0.6 + 0.6/. (a) Lax spectrum A-plane. (b) Stability spectrum A-plane.
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Figure 5. The same as in figure 4 but for ity =1, u = —0.2, and u3 = Uy = —0.4 + 0.2i. (a) Lax spectrum A-plane.
(b) Stability spectrum A-plane.
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Figure 6. The Lax and stability spectra for periodic waveform (5.1) with « = 0.97 and different values of €. (a)—(c) and (g)—(i):
Lax spectrum in A-plane; (d)—(f) and (j)—(1): stability spectrum in A-plane.

where

\/(K—%e)z—i—l—/cz

5= ,
(K+%)2+1—K2

w="* |:<K—§€>2+1—K2i| |:(K+§)2+1—K2]

C6607202 18 1 205 Y 2014 edsi/feuinof BioBuiysiignd/aposiefor H



04 04 - - - - 04

0.3 03 1 03

0.1 0.1 1 0.1
Im A Im ,\" Tm AO
-0.1 0.1 -0.1
-0.2 0.2 -0.2

03 0.3 1 0.3

-0.4 04 -0.4
-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.6 04 0.2 0 02 04 0.6 -0.6 -0.4 -0.2 0 02 0.4 0.6
Re A Re A Re A\
(a) e=—-0.3 (b) e =—0.05 (c) e=0.2
0.6 0.6 0.6
0.4 0.4 0.4
0.2 0.2 0.2
Im A 8_ __@ Tm A %g Tm A
0 0 0
0.2 -0.2 0.2
0.4 0.4 04
0.6 0.6 0.6
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
Re A Re A Re A
(d) e=-0.3 (e) e=—-0.05 (f) e=0.2

Figure7. The Laxand stability spectra for periodic waveform (5.1) with k. = 0.9 and differentvalues of €. (a)—(c): Lax spectrum
in A-plane; (d)—(f): stability spectrum in A-plane.

(K—%)(—K-l—%e)-l—l—l(z

and A =1-— 5

W

When € =0, we have § =1, u =1, and k =« so that we recover the cnoidal wave with the profile
U(x) = ken(x; «) as in the periodic solution (1.5).

We fix k = 0.97 and compute numerically the Lax and stability spectra for different values of
€ € (0,2«). The calculated Lax and stability spectra shown in figure 6 turn out to be very similar
to those shown on figure 1 for the cnoidal wave (1.5). The only difference from figure 1 is that
figure-8 in panel (l) corresponds to the segments Y1 of the Lax spectrum in theorem 4.4 crossing
the real line in panel (i) and that the line segment [—|X1], |11]] has a non-zero length. The co-
periodic instability (red points on the stability spectrum) arises when the segments X1 of the Lax
spectrum touch the endpoints of the line segment [—|A1], [A1]].

If we fix k =0.9 and change € to the negative values as well, then the computed Lax and
stability spectra shown in figure 7 features a different transformation of the instability bands. The
figure-8 instability in panel (f) is related to the segments X1 of the Lax spectrum in theorem 4.4
crossing the imaginary line in panel (c). The co-periodic instability (red points on the stability
spectrum) arises again when the segments X1 of the Lax spectrum touch the endpoints of the
line segment [—|A1], |A1]]. The co-periodic instability is present when the segments X intersect
the real line outside [—A1, 21] and is absent when they intersect the real line inside [—A1, 21].

For the cnoidal wave in figure 1, the line segment [—|A1],|A1]] shrinks to the origin and the
co-periodic instability arises when the segments X+ of the Lax spectrum touch the origin. Hence,
all four cases analysed in the proof of theorem 4.4 do actually occur in the Lax spectrum for the
waveform (2.6) with different parameter values.

6. Conclusion

We have studied the spectral stability of the periodic travelling waves in the focusing mKdV
equation and showed that the instability bands for the cnoidal periodic waves transform from
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figure-8 into figure-oo due to the co-periodic instability bifurcation. This transformation is rather
generic for other models with periodic travelling waves (Stokes waves) [1,3,11].

The conclusion was obtained by using a relation between squared eigenfunctions of the Lax
pair and eigenfunctions of the linearized mKdV equation at the periodic travelling waves. The
location of the Lax spectrum remains an open problem, especially for the cnoidal periodic waves.
It is expected that the elliptic function theory can be useful to compute it explicitly.

Given universality of the focusing mKdV equation for many applications in fluids, optics and
plasmas, the conclusions obtained in this work can be used for the comprehensive study of the
modulational instability of the cnoidal periodic waves in the relevant non-integrable models.
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