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 A B S T R A C T

We address Euler’s equations for irrotational gravity waves in an infinitely deep fluid rewritten in conformal 
variables. Stokes waves are traveling waves with the smooth periodic profiles. In agreement with the previous 
numerical results, we give a rigorous proof that the zero eigenvalue bifurcation in the linearized equations of 
motion for co-periodic perturbations occurs at each extremal point of the energy function versus the steepness 
parameter, provided that the wave speed is not extremal at the same steepness. We derive the leading order 
of the unstable eigenvalues and, assisted with numerical approximation of its coefficients, we show that the 
new unstable eigenvalues emerge only in the direction of increasing steepness.
1. Introduction

Ocean swell can be viewed in many cases as a train of almost 
periodic traveling waves propagating along a fixed direction. Under-
standing stability properties of periodic wave trains is central to wave 
forecasting. Such periodic traveling waves were originally found by 
Stokes [1,2], and hence they are often referenced as the Stokes waves. 
The existence of Stokes waves with smooth profiles was proven in [3–
5]. The existence of the limiting wave with the peaked profile was 
proven in [6–8].

The stability of Stokes waves is studied either with respect to 
perturbations co-periodic with the underlying wave (superharmonic), 
or in a wider space of perturbations periodic with longer periods (sub-
harmonic). In the latter case, the modulational instability, also known 
as the Benjamin-Feir instability [9,10], is recovered. The modulational 
instability of Stokes waves was studied rigorously in [11–15]. The 
high-frequency instabilities discovered in [16] and theoretically studied 
in [17,18] have the same modulational nature.

Whether subharmonic or superharmonic, the stability properties of 
traveling waves can be efficiently studied in the limit of small ampli-
tude [19] where the small-amplitude expansions of the Stokes waves 
offer accurate approximations. For Stokes waves of high steepness and 
for the limiting wave (with a 2𝜋∕3 crest angle), the series expansion 
diverges and numerical methods must be used instead. Numerical 
solution of the eigenvalue problem for stability of Stokes waves on a 
surface of an infinitely deep fluid goes back to  [20–22]. In [23,24] the 
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stability problem is treated as an eigenvalue problem for a large ma-
trix in Fourier basis and is restricted to superharmonic perturbations. 
Recently, it was realized that the stability spectrum can be determined 
more efficiently via matrix-free methods [25,26] allowing to extend the 
stability analysis to nearly limiting Stokes waves [27], and include the 
Bloch-Floquet theory to cover subharmonic perturbations [28,29].

Fig.  1 presents a schematic dependence of the energy  (green) and 
the speed 𝑐 (red) of the traveling periodic wave continued with respect 
to the steepness parameter 𝑠 [24–29], see also  [20–22] for the early 
numerical results suggesting the same behavior of energy and speed 
versus the steepness. The family of traveling periodic waves bifurcates 
from the small-amplitude limit (0 = 0, 𝑐0) at 𝑠 = 0 and oscillates 
towards the point (lim, 𝑐lim), which corresponds to the limiting wave 
with the peaked profile for the limiting steepness 𝑠lim, see [6–8]. A 
striking aspect of this figure is that every extremal point of the energy 
corresponds to an instability bifurcation in the co-periodic stability 
problem, indicated by the presence of a zero eigenvalue with higher 
algebraic multiplicity compared to the multiplicity imposed by the 
symmetries of the water wave equations. When the steepness of the 
periodic wave is increased past the extremal point of the energy, a 
new pair of real eigenvalues bifurcates in the spectrum of the co-
periodic stability problem. It is conjectured in [29] that the family 
of traveling periodic waves displays infinitely many oscillations with 
infinitely many instability bifurcations before reaching the limiting 
peaked wave.
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Fig. 1. Oscillations of the energy (green) and the speed (red) as the limiting wave is approached. The figure illustrates lim− and 𝑐lim− 𝑐 as a function of 𝑠lim−𝑠, 
where 𝑠lim, lim, and 𝑐lim represent the steepness, the energy, and the speed of the limiting wave wiht the peaked profile. The black circles mark the extreme 
points of the energy, where the instability bifurcation occurs.
The main purpose of this paper is to give a rigorous proof that 
the instability bifurcation occurs exactly at each extremal point of the 
energy.  Moreover, we show that the extremal points of the energy 
coincide with those of the horizontal momentum. If the zero eigenvalue 
has generally geometric multiplicity two and algebraic multiplicity four 
due to symmetries of the water wave equations, we show that the zero 
eigenvalue has geometric multiplicity two and algebraic multiplicity of 
at least six at the instability bifurcation point. This result is given by 
Theorem  1. In addition, we compute  the leading order of  the unstable 
eigenvalues in the co-periodic stability problem and, assuming nonzero 
coefficients of the leading order, we prove that the new unstable 
eigenvalues emerge only in the direction of increasing steepness. This 
result is given by Theorem  2.

For the technical parts of the proofs, we adopt conformal variables 
for the two-dimensional fluid dynamics developed in [30–34] and used 
in [23–26] for spectrally accurate numerical approach to the stability 
problem. The conformal variables allow us to write the problem of find-
ing Stokes wave as a pseudo-differential nonlinear equation [33,35,36], 
and formulate the stability problem as a matrix-free pseudo-differential 
eigenvalue problem with periodic coefficients [25,26]. The conserved 
quantities of the water wave equations [37] are rewritten in conformal 
variables and impose constraints on solutions of the co-periodic stabil-
ity problem. Computations of the Jordan blocks and Puiseux expansions 
for multiple eigenvalues are performed in compliance with the con-
straints, which act as the Fredholm solvability conditions for solutions 
at each order of the perturbation theory. Since justification of the 
Puiseux expansions is fairly known for linear eigenvalue problems [38], 
we will focus on actual computations rather than on the justification 
analysis.

The main result of Theorem  1 has been well understood in the 
dynamics of fluids, based on the numerical results [20,21] and the 
formal analytical computations [39,40]. Compared to these earlier 
works which were based on Zakharov’s equations of motion [10], we 
develop the analysis of equations of motion in conformal variables by 
exploring Babenko’s pseudo-differential equation [33] and its lineariza-
tion. We also go beyond the criterion for the instability bifurcation 
and compute  the leading order of the unstable eigenvalues. Using 
much more elaborate numerical computations, we confirm that the 
coefficients of the leading order satisfy the assumptions of our theory.

The paper is organized as follows. Equations of motion in physical 
and conformal variables are formulated in Section 2 as well as the 
conserved quantities and the description of the existence and stability 
problems for the Stokes waves. Section 3 presents the main result on 
the co-periodic instability bifurcation (Theorem  1). Section 4 presents 
2 
the leading order of  the unstable eigenvalues (Theorem  2). Section 5 
contains numerical approximations of eigenfunctions and eigenvalues 
at the instability bifurcation to confirm the main prediction that every 
instability bifurcation generates a new unstable eigenvalue in the di-
rection of the increasing steepness. Further questions are discussed in 
Section 6.

2. Equations of motion in conformal variables

Let 𝑦 = 𝜂(𝑥, 𝑡) be the profile for the free surface of an incompressible 
and irrotational deep fluid in the 2𝜋-periodic domain T and in time 
𝑡 ∈ R. For a proper definition of the free surface, we add the zero-mean 
constraint ∫T 𝜂(𝑥, 𝑡)𝑑𝑥 = 0, which is invariant in the time evolution of 
Euler’s equations with a free surface.

Let 𝜑(𝑥, 𝑦, 𝑡) be the velocity potential, which satisfies the Laplace 
equation in the time-dependent spatial domain
(𝑡) ∶=

{

(𝑥, 𝑦) ∈ R2 ∶ 𝑥 ∈ T, −∞ < 𝑦 ≤ 𝜂(𝑥, 𝑡)
}

subject to the periodic boundary conditions on T and the decay condi-
tion as 𝑦→ −∞. The Euler’s equations are completed by two additional 
(kinematic and dynamic) conditions at the free surface 𝑦 = 𝜂(𝑥, 𝑡): 

𝜂𝑡 + 𝜑𝑥𝜂𝑥 − 𝜑𝑦 = 0,

𝜑𝑡 +
1
2
(𝜑𝑥)2 +

1
2
(𝜑𝑦)2 + 𝜂 = 0,

}

at 𝑦 = 𝜂(𝑥, 𝑡), (1)

where the gravity constant 𝑔 is set to unity for convenience.
Consider now a holomorphic function 𝑧(𝑢, 𝑡) = 𝜉(𝑢, 𝑡)+ 𝑖𝜂(𝑢, 𝑡), which 

realizes a conformal mapping of the vertical strip in the lower complex 
half-plane 𝑢 ∈ T × 𝑖(−∞, 0] to the fluid domain 𝑧(⋅, 𝑡) ∈ (𝑡) beneath 
the free surface. The top boundary Im 𝑢 = 0 gives the free surface in 
parametric form 𝑥 = 𝜉(𝑢, 𝑡) and 𝑦 = 𝜂(𝑢, 𝑡) written in variables 𝑢 ∈ T and 
𝑡 ∈ R with 𝜉 = 𝑢 − 𝜂, where  is the periodic Hilbert transform in 
𝐿2(T) normalized by the Fourier symbol

̂𝑛 =
{

𝑖 sgn(𝑛), 𝑛 ∈ Z∖{0},
0, 𝑛 = 0.

We also define a positive self-adjoint operator  = −𝜕𝑢 = |𝜕𝑢| in 𝐿2(T)
with the domain 𝐻1

per (T) and the Fourier symbol

̂𝑛 = |𝑛|, 𝑛 ∈ Z.

It follows from 𝜉 = 𝑢 −𝜂 that
𝜉 = 1 +𝜂 and 𝜉 = −𝜂 .
𝑢 𝑡 𝑡
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The mean value of 𝜂 in variable 𝑢 ∈ T might be a function of time 𝑡 ∈ R
but plays no role in the equations of motion.

By using the constrained Lagrange minimization, see [34] and [36, 
Appendix A], the system of Euler’s equations in physical coordinates 
(1) can be rewritten as the following system of pseudo-differential 
equations for the surface velocity potential 𝜓(𝑢, 𝑡) = 𝜑(𝜉(𝑢, 𝑡), 𝜂(𝑢, 𝑡), 𝑡), 
and the free surface elevation 𝜂(𝑢, 𝑡) defined at the top boundary Im 𝑢 =
0: 
{

𝜂𝑡(1 +𝜂) + 𝜂𝑢𝜂𝑡 +𝜓𝑢 = 0,
𝜓𝑡𝜂𝑢 − 𝜓𝑢𝜂𝑡 + 𝜂𝜂𝑢 +

(

(1 +𝜂)𝜓𝑡 + 𝜓𝑢𝜂𝑡 + 𝜂(1 +𝜂)
)

= 0.
(2)

The system (2) is the starting point of our work. In the rest of this sec-
tion, we review the conserved quantities, the traveling wave formula-
tion, the existence problem for traveling waves, and the linear stability 
problem for traveling waves with respect to co-periodic perturbations.

2.1. Conserved quantities

Taking the mean value of the two equations in system (2) yields the 
existence of the following two conserved quantities:

𝑀(𝜂) = ∫T
𝜂(1 +𝜂)𝑑𝑢, (3)

𝑃 (𝜓, 𝜂) = −∫T
𝜓𝜂𝑢𝑑𝑢. (4)

Due to the zero-mean constraint ∫T 𝜂(𝑥, 𝑡)𝑑𝑥 = 0 on the surface elevation 
𝜂 and the chain rule 𝑑𝑥 = (1 +𝜂)𝑑𝑢, we get the constraint 𝑀(𝜂) = 0, 
or explicitly 

∫T
𝜂(1 +𝜂)𝑑𝑢 = 0. (5)

With the constraint 𝑀(𝜂) = 0, another conserved quantity follows from 
the second equation in system (2): 

𝑄(𝜓, 𝜂) = ∫T
𝜓(1 +𝜂)𝑑𝑢, (6)

which corresponds to the conserved mean value of the potential 𝜓 on 
the surface in physical variable 𝑥 ∈ T due to the chain rule 𝑑𝑥 =
(1 +𝜂)𝑑𝑢.

The conserved quantities (3), (4), and (6) follow from the general 
study of symmetries and conserved quantities for Euler’s equations 
in physical coordinates in [37], where 𝑀(𝜂), 𝑃 (𝜓, 𝜂), and 𝑄(𝜓, 𝜂) are 
referred to as mass, the horizontal momentum, and the vertical momentum. 
The same list of conserved quantities in the conformal variable 𝑢 ∈ T
can also be found in [34]. The two components of momentum can be 
expressed in the complex form 

𝑄 − 𝑖𝑃 = ∫T
𝜓𝑧𝑢 𝑑𝑢, (7)

where 𝑧𝑢 = 𝜉𝑢 + 𝑖𝜂𝑢 = 1 +𝜂 + 𝑖𝜂𝑢.
To derive the energy conservation, we use the zero-mean constraint 

(5) and the conservation of 𝑄(𝜓, 𝜂) in (6). Applying  to the second 
equation of system (2) with 2 = −Id in the space of 2𝜋-periodic 
function with zero mean, we obtain 

𝜓𝑡(1 +𝜂) + 𝜓𝑢𝜂𝑡 + 𝜂(1 +𝜂) −(𝜓𝑡𝜂𝑢 − 𝜓𝑢𝜂𝑡 + 𝜂𝜂𝑢) = 0. (8)

Multiplying the first equation of system (2) by 𝜓𝑡 and Eq.  (8) by 
𝜂𝑡, integrating over the period of T, and subtracting one equation 
from another, we integrate by parts and obtain the conserved energy
(Hamiltonian) in the form: 

𝐻(𝜓, 𝜂) = 1
2 ∫T

(

𝜓𝜓 + 𝜂2(1 +𝜂)
)

𝑑𝑢. (9)

The energy 𝐻(𝜓, 𝜂) is the main quantity in the stability analysis of the 
traveling waves.
3 
2.2. Formulation of equations of motion in the traveling frame

Let us write the first equation of system (2) and Eq.  (8) in the 
reference frame moving with the wave speed 𝑐:
{

𝜂𝑡(1 +𝜂) + 𝜂𝑢𝜂𝑡 +𝜓𝑢 − 𝑐𝜂𝑢 = 0,
𝜓𝑡(1 +𝜂) + 𝜓𝑢𝜂𝑡 + 𝜂(1 +𝜂) − 𝑐𝜓𝑢 −(𝜓𝑡𝜂𝑢 − 𝜓𝑢𝜂𝑡 + 𝜂𝜂𝑢) = 0,

where 𝑢 now stands for 𝑢− 𝑐𝑡. Let us introduce the following change of 
variables by 
𝜓 = −𝑐𝜂 + 𝜁, (10)

after which the equations of motion yield,
⎧

⎪

⎨

⎪

⎩

𝜂𝑡(1 +𝜂) + 𝜂𝑢𝜂𝑡 +𝜁𝑢 = 0,
𝜁𝑡(1 +𝜂) + 𝜁𝑢𝜂𝑡 + 𝜂(1 +𝜂) − 𝑐𝜁𝑢 − 𝑐𝜂𝑡 − 𝑐2𝜂

−
(

𝜁𝑡𝜂𝑢 − 𝜁𝑢𝜂𝑡 + 𝜂𝜂𝑢 − 𝑐𝜂𝑢𝜂𝑡 − 𝑐𝜂𝑡𝜂
)

= 0.

Substituting 𝜁𝑢 = (𝜂𝑡(1 + 𝜂) + 𝜂𝑢𝜂𝑡) from the first equation to the 
second equation transforms the system of evolution equations to the 
final form: 
{

𝜂𝑡(1 +𝜂) + 𝜂𝑢𝜂𝑡 = 𝜁,
𝜁𝑡(1 +𝜂) + 𝜁𝑢𝜂𝑡 −(𝜁𝑡𝜂𝑢 − 𝜁𝑢𝜂𝑡) − 2𝑐𝜂𝑡 =

(

𝑐2 − 1
)

𝜂 − 𝜂𝜂 − 1
2
𝜂2.

(11)

We are now ready to set up the existence and linear stability problems 
for traveling waves.

2.3. Existence of traveling waves

Traveling waves correspond to the reduction 𝜁 = 0 for the time-
independent solutions of system (11). This gives the scalar pseudo-
differential Babenko’s equation [33] for the profile 𝜂 = 𝜂(𝑢): 

(𝑐2 − 1)𝜂 = 1
2
𝜂2 + 𝜂𝜂. (12)

This equation can be obtained as the Euler–Lagrange equation for the 
action functional 
𝛬𝑐 (𝜂) ∶=

1
2
⟨(𝑐2 − 1)𝜂, 𝜂⟩ − 1

2
⟨𝜂2, 𝜂⟩, 𝜂 ∈ 𝐻1

per (T), (13)

where ⟨𝑓, 𝑔⟩ ∶= 1
2𝜋 ∫T 𝑓 (𝑢)𝑔(𝑢)𝑑𝑢  is a standard normalized inner 

product in 𝐿2(T). We make the following assumption of existence of 
traveling waves.

Assumption 1.  There exists a family of smooth traveling waves with 
the even profile 𝜂 ∈ 𝐶∞

per (T) satisfying the Babenko equation (12) for 
𝑐 ∈ (1, 𝑐∗) with some 𝑐∗ > 1.

Remark 1.  The point 𝑐 = 1 is the bifurcation point of the 2𝜋-periodic 
solutions with the even single-lobe profile from the zero solution of 
the Babenko equation (12). It is easy to show, see [19,34,36], that 
𝑐2 = 1 + 𝑎2 + (𝑎4) and 𝜂(𝑢) = 𝑎 cos(𝑢) + (𝑎2), where 𝑎 is the small 
amplitude (steepness) of the 2𝜋-periodic solutions.

Remark 2.  As suggested in Fig.  1, the profile 𝜂 ∈ 𝐶∞
per (T) is better 

parameterized by the steepness, 𝑠, rather than the speed, 𝑐, because the 
dependence of speed 𝑐 on 𝑠 is oscillatory towards the limiting wave. The 
details of this dependence are not important for the stability analysis as 
long as the zero eigenvalue bifurcation (at the extremal point of energy) 
is different from the extremal point of speed, see Assumption  2.

2.4. Linear stability of traveling waves

Expanding system (11) for (𝜂, 𝜁 ) near the traveling wave with the 
profile (𝜂, 0) and truncating the system at the linear terms with re-
spect to the co-periodic perturbation (𝑣,𝑤), we obtain the linearized 
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equations of motion (also derived in [25]): 
{

𝑣𝑡 = 𝑤,
∗𝑤𝑡 − 2𝑐𝑣𝑡 = 𝑣, (14)

where

 ∶= 1 +𝜂 + 𝜂′ and ∗ ∶= 1 +𝜂 −(𝜂′ ⋅),

and 
 ∶= 𝑐2 − 1 −𝜂 − 𝜂 −(𝜂 ⋅). (15)

We note that ∗ is the adjoint operator to a bounded operator 
in 𝐿2(T) with respect to ⟨⋅, ⋅⟩ and that  is a self-adjoint unbounded 
operator in 𝐿2(T) with Dom() = 𝐻1

per (T). Furthermore,  is the 
linearized operator of the Babenko equation (12). Also recall that 
is a self-adjoint unbounded operator in 𝐿2(T) with Dom() = 𝐻1

per (T). 
It is clear from the Fourier series that 1 = 0, and Ker() = span(1).

Remark 3.  It follows from the translational symmetry of the Babenko 
equation (12) that 𝜂′ = 0 with 𝜂′ ∈ 𝐻1

per (T) under Assumption  1. We 
also note that 
1 = − (1 + 2𝜂) , (16)

which is useful in our computations.
Separating variables in the linearized system (14) yields the spectral 

stability problem with respect to co-periodic perturbations, 
{

𝑤 = 𝜆𝑣,
𝑣 = 𝜆(∗𝑤 − 2𝑐𝑣), (17)

where (𝑣,𝑤) ∈ 𝐻1
per (T) × 𝐻

1
per (T) is an eigenfunction and 𝜆 ∈ C is an 

eigenvalue.

Remark 4.  There exist two linearly independent eigenfunctions in 
the kernel of the spectral stability problem (17) due to the following 
two symmetries of the underlying physical system. A spatial translation 
of the Stokes wave results in another solution of the Babenko equa-
tion (12), and is associated with a one-dimensional subspace spanned 
by the eigenfunction (𝑣,𝑤) = (𝜂′, 0). Similarly, the fluid potential admits 
gauge transformation 𝜓(𝑢, 𝑡) → 𝜓(𝑢, 𝑡)+𝜓0(𝑡) for any function 𝜓0(𝑡). This 
property is associated with a one-dimensional subspace spanned by the 
eigenfunction (𝑣,𝑤) = (0, 1).

3. Criterion for instability bifurcation

We rewrite the spectral stability problem (17) in the matrix form 
(

0 
 0

)(

𝑣
𝑤

)

= 𝜆
(

 0
−2𝑐 ∗

)(

𝑣
𝑤

)

, (18)

which is rewritten as the generalized eigenvalue problem of the form 
𝐴𝑥⃗ = 𝜆𝐵𝑥⃗ with
𝐴 ∶ 𝐻1

per (T) ×𝐻
1
per (T) → 𝐿2(T) × 𝐿2(T),

𝐵 ∶ 𝐿2(T) × 𝐿2(T) → 𝐿2(T) × 𝐿2(T),

given by

𝐴 =
(

0 
 0

)

, 𝐵 =
(

 0
−2𝑐 ∗

)

,

and 𝑥⃗ = (𝑣,𝑤) ∈ 𝐻1
per (T)×𝐻

1
per (T).  Since the embedding of 𝐻1

per (T) into 
𝐿2(T) is compact, the resolvent operator (𝐴−𝜆𝐵)−1 is compact, and the 
spectrum of the spectral stability problem (18) consists of eigenvalues 
with finite algebraic multiplicity. 

Remark 5.  The bounded operator  ∶ 𝐿2(T) → 𝐿2(T) is invertible 
with the explicit formula for the inverse operator, see [25, Eq. (13)]. 
Hence, the bounded operator 𝐵 ∶ 𝐿2(T) ×𝐿2(T) → 𝐿2(T) ×𝐿2(T) is also 
invertible so that the generalized eigenvalue problem 𝐴𝑥⃗ = 𝜆𝐵𝑥⃗ in (18) 
can be rewritten as the linear eigenvalue problem 𝐵−1𝐴𝑥⃗ = 𝜆𝑥⃗.
4 
The geometric multiplicity of 𝜆 = 0 is defined by the dimension of 
Ker(𝐴). The algebraic multiplicity of 𝜆 = 0 is defined by the length of 
the Jordan chain of generalized eigenvectors

𝐴𝑥⃗0 = 0,

𝐴𝑥⃗1 = 𝐵𝑥⃗0,

𝐴𝑥⃗2 = 𝐵𝑥⃗1,

⋮

 as long as ⃗𝑥0, 𝑥⃗1, 𝑥⃗2,… ∈ 𝐻1
per (T)×𝐻

1
per (T). In what follows, we compute 

the Jordan chain of 𝜆 = 0 for the particular operators 𝐴 and 𝐵 in (18).

3.1.  Eigenvectors of (18) for 𝜆 = 0 due to the symmetries

Since 1 = 0 and 𝜂′ = 0, the null space of the unbounded operator 
𝐴 ∶ 𝐻1

per (T) ×𝐻
1
per (T) → 𝐿2(T) ×𝐿2(T) is at least two-dimensional with 

(

𝑣
𝑤

)

= 𝑎1

(

𝜂′

0

)

+ 𝑎2

(

0
1

)

, (19)

where (𝑎1, 𝑎2) ∈ R2. Due to the Hamiltonian symmetry,  see (21) 
and (22) below,  the generalized null space of the spectral stability 
problem (18) is at least four-dimensional with at least two generalized 
eigenfunctions.

Definition 1.  We say that the periodic wave with the profile 𝜂 ∈
𝐶∞
per (T) is at the stability threshold if the generalized null space of 
the spectral stability problem (18) has algebraic multiplicity exceeding 
four. 

Hypothetically, the stability threshold of Definition  1 can be hit 
if  either the null space of 𝐴 becomes at least three-dimensional or 
the null space of 𝐴 remains two-dimensional but the generalized null 
space of 𝐵−1𝐴 becomes at least six-dimensional. Since Ker() = span(1), 
the first possibility could only be realized if  has a double zero 
eigenvalue, which is indeed observed numerically in [25]. However, 
it was realized in [21,39] (see also [29]) that the points of the double 
zero eigenvalue of  correspond to the fold points in the dependence 
of speed 𝑐 versus steepness 𝑠, see the red curve in Fig.  1.  In this 
case, the family of solutions of the Babenko equation (12) fails to 
continue with respect to parameter 𝑐, but the generalized null space of 
the spectral stability problem (18) still has the algebraic multiplicity 
equals to four. Therefore, the stability threshold of Definition  1 can 
only be realized away from the fold points, which are eliminated by 
the following assumption.

Assumption 2.  For the given value of 𝑐 ∈ (1, 𝑐∗), we have Ker() =
span(𝜂′).

Remark 6.  It follows from Assumption  2 that the mapping 𝑐 ↦ 𝜂 ∈
𝐶∞
per (T) is smooth, since the profile of 𝜂 is even and the kernel of  is 
spanned by the odd eigenfunction 𝜂′. Hence, we can differentiate the 
Babenko equation (12) in 𝑐 and obtain 

𝜕𝑐𝜂 + 2𝑐𝐾𝜂 = 0, ⇒ 𝜕𝑐𝜂 = −2𝑐−1𝐾𝜂, (20)

where 𝜕𝑐𝜂 ∈ 𝐶∞
per (T) and −1 is uniquely defined on the subspace of 

even functions in 𝐿2(T).

Under Assumption  2, the periodic solutions to 𝐴𝑥⃗0 = 0 are spanned 
by (19). The first element of the Jordan chain 𝐴𝑥⃗1 = 𝐵𝑥⃗0 is defined 
by the periodic solutions (𝑣1, 𝑤1) ∈ 𝐻1

per (T) × 𝐻1
per (T) of the linear 

inhomogeneous equations: 
{

𝑤1 = 𝑎1𝜂′,
𝑣 = −2𝑐𝑎 𝜂′ + 𝑎 ∗1.

(21)

1 1 2
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Since 𝜂′ = 𝜂′ and ⟨1, 𝜂′⟩ = 0, there exists 𝑤1 ∈ Dom() from the 
first equation in the system (21). For unique definition of 𝑤1, we take 
projection of 𝑤1 to 1 to be zero, after which we get 𝑤1 = 𝑎1𝜂. Since 𝜂
is even, both 𝜂 and 𝜂′ are odd. Hence, 𝜂′ has opposite parity compared 
to 𝜂′ and ∗1 = 1 + 2𝜂 so that there exists 𝑣1 ∈ Dom() from the 
second equation in the system (21). For unique definition of 𝑣1, we 
take projection of 𝑣1 to 𝜂′ to be zero. By using (16) and (20), we get 
the explicit solution 𝑣1 = −𝑎1𝜕𝑐𝜂−𝑎2, where 𝜕𝑐𝜂 is even and 𝜂 is odd. 
Thus, the periodic solutions to the first element of the Jordan chain 
𝐴𝑥⃗1 = 𝐵𝑥⃗0 are spanned by 
(

𝑣
𝑤

)

= 𝑎1

(

−𝜕𝑐𝜂
𝜂

)

+ 𝑎2

(

−1
0

)

, (22)

so that the generalized null space of the spectral stability problem (18) 
is at least four-dimensional with at least two generalized eigenfunc-
tions.

3.2.  Eigenvectors of (18) for 𝜆 = 0 due to the zero eigenvalue bifurcation

In what follows, we compute the second element of the Jordan chain 
𝐴𝑥⃗2 = 𝐵𝑥⃗1 and obtain the criterion for the generalized null space of the 
spectral stability problem (18) to be at least six-dimensional. To do so, 
we define the wave momentum (𝑐) and the wave energy (𝑐) related 
to the wave profile 𝜂 ∈ 𝐶∞

per (T) as 

(𝑐) ∶= 𝑃 (𝜓 = −𝑐𝜂, 𝜂) = 𝑐⟨𝜂, 𝜂⟩ (23)

and 

(𝑐) ∶= 𝐻(𝜓 = −𝑐𝜂, 𝜂) = 𝑐2

2
⟨𝜂, 𝜂⟩ + 1

2
⟨𝜂2, (1 +𝜂)⟩, (24)

where 𝑃 (𝜓, 𝜂) and 𝐻(𝜓, 𝜂) are given by (4) and (9).
The following theorem presents the main result on the criterion for 

instability bifurcation.

Theorem 1.  Under Assumptions  1 and 2, the generalized null space of 
the spectral problem (18) is at least six-dimensional if and only if  ′(𝑐) = 0
or, equivalently,  ′(𝑐) = 0.

Proof.  The second element of the Jordan chain 𝐴𝑥⃗2 = 𝐵𝑥⃗1 is defined 
by the periodic solutions (𝑣2, 𝑤2) ∈ 𝐻1

per (T) × 𝐻1
per (T) of the linear 

inhomogeneous equations: 
{

𝑤2 = 𝑣1,
𝑣2 = −2𝑐𝑣1 +∗𝑤1.

(25)

The system (25) is written explicitly as 
{

𝑤2 = −𝑎1𝜕𝑐𝜂 − 𝑎21,
𝑣2 = 2𝑐𝑎1𝜕𝑐𝜂 + 𝑎1∗𝜂. (26)

Since

⟨1,𝑓 ⟩ = ⟨∗1, 𝑓 ⟩ = ⟨(1 + 2𝜂), 𝑓 ⟩,

⟨𝜂′,∗𝑓 ⟩ = ⟨𝜂′, 𝑓 ⟩ = ⟨𝜂′, 𝑓 ⟩,

⟨𝜂′,𝑓 ⟩ = −⟨𝜂′, 𝑓 ⟩ = ⟨𝜂, 𝑓 ⟩,

Fredholm theorem implies that there exist periodic solutions of the 
linear inhomogeneous system (26) if and only if the following linear 
homogeneous system on (𝑎1, 𝑎2) admits a nonzero solution: 
(

−⟨(1 + 2𝜂), 𝜕𝑐𝜂⟩ −⟨(1 + 2𝜂), 1⟩
⟨𝜂′,𝜂⟩ + 2𝑐⟨𝜂, 𝜕𝑐𝜂⟩ 0

)(

𝑎1
𝑎2

)

=
(

0
0

)

. (27)

Taking derivative of the constraint (5) with respect to 𝑐 yields
⟨(1 + 2𝜂), 𝜕𝑐𝜂⟩ = 0.

On the other hand, since  is self-adjoint and 1 = 0, we have
⟨1,𝜂⟩ = ⟨1, 𝜂⟩ = 0.
5 
Hence, the linear system (27) can be rewritten in the equivalent form 
as
(

0 −1
⟨𝜂,𝜂⟩ + 2𝑐⟨𝜂, 𝜕𝑐𝜂⟩ 0

)(

𝑎1
𝑎2

)

=
(

0
0

)

.

Thus, 𝑎2 = 0, whereas 𝑎1 ≠ 0 if and only if 

0 = ⟨𝜂, 𝜂⟩ + 2𝑐⟨𝜂, 𝜕𝑐𝜂⟩ =
𝑑
𝑑𝑐
𝑐⟨𝜂, 𝜂⟩ =  ′(𝑐). (28)

In the case of  ′(𝑐) = 0, the periodic solutions to the second element 
of the Jordan chain 𝐴𝑥⃗2 = 𝐵𝑥⃗1 are represented in the form (𝑣2, 𝑤2) =
𝑎1(𝑣̃2, 𝑤̃2) for 𝑎2 = 0, where (𝑣̃2, 𝑤̃2) ∈ 𝐻1

per (T) × 𝐻
1
per (T) are uniquely 

defined from solutions of the linear inhomogeneous equations 
{

𝑤̃2 = −𝜕𝑐𝜂,
𝑣̃2 = 2𝑐𝜕𝑐𝜂 +∗𝜂 −  ′(𝑐)

‖𝜂′‖2
𝜂′, (29)

subject to the orthogonality conditions 
⟨1, 𝑤̃2⟩ = 0 and ⟨𝜂′, 𝑣̃2⟩ = 0. (30)

To prove that the generalized null space of the spectral problem 
(18) is at least six-dimensional, we consider the third element of the 
Jordan chain 𝐴𝑥⃗3 = 𝐵𝑥⃗2 defined by the periodic solutions (𝑣3, 𝑤3) ∈
𝐻1

per (T) ×𝐻
1
per (T) of the linear inhomogeneous equations 

{

𝑤3 = 𝑎1𝑣̃2,
𝑣3 = −2𝑐𝑎1𝑣̃2 + 𝑎1∗𝑤̃2.

(31)

Since 𝜂 is even and operators ,  and  are parity preserving, we 
obtain from (29) and the orthogonality conditions (30) that 𝑤̃2 is even 
and 𝑣̃2 is odd. Hence, odd 𝑣̃2 is orthogonal to even 1 and even 
−2𝑐𝑣̃2 + ∗𝑤̃2 is orthogonal to odd 𝜂′. By Fredholm’s theorem, the 
periodic solutions to the third element of the Jordan chain 𝐴𝑥⃗3 = 𝐵𝑥⃗2
are represented in the form (𝑣3, 𝑤3) = 𝑎1(𝑣̃3, 𝑤̃3), where (𝑣̃3, 𝑤̃3) ∈
𝐻1

per (T) × 𝐻1
per (T) are uniquely defined from solutions of the linear 

inhomogeneous equations 
{

𝑤̃3 = 𝑣̃2,
𝑣̃3 = −2𝑐𝑣̃2 +∗𝑤̃2.

(32)

subject to the orthogonality conditions 
⟨1, 𝑤̃3⟩ = 0 and ⟨𝜂′, 𝑣̃3⟩ = 0. (33)

From the same parity argument and the orthogonality conditions (33), 
we conclude that 𝑤̃3 ∈ 𝐻1

per (T) is odd and 𝑣̃3 ∈ 𝐻1
per (T) is even. 

Thus, the generalized null space of the spectral problem (18) is at least 
six-dimensional if and only if  ′(𝑐) = 0.

It remains to show that the critical points of (𝑐) coincide with the 
critical points of the energy (𝑐). Differentiating the action 𝛬𝑐 (𝜂) given 
by (13) in 𝑐 yields 
𝑑
𝑑𝑐
𝛬𝑐 (𝜂) = 𝑐⟨𝜂, 𝜂⟩ + ⟨(𝑐2𝜂 − 𝜂 − 1

2
𝜂2 − 𝜂𝜂), 𝜕𝑐𝜂⟩ = (𝑐), (34)

where the quantity in the brackets vanishes due to the Babenko equa-
tion (12). Since 𝛬𝑐 (𝜂) = 𝑐(𝑐) − (𝑐), we obtain
𝑑
𝑑𝑐
𝛬𝑐 (𝜂) = (𝑐) + 𝑐 ′(𝑐) −  ′(𝑐),

which yields  ′(𝑐) = 𝑐 ′(𝑐). □

Remark 7.  We have added the orthogonal projection to the second 
equation of system (29) even though  ′(𝑐) = 0. This is useful for 
numerical approximations as well as for the derivation of the leading 
order of the unstable eigenvalues in Theorem  2.

Remark 8.  The two orthogonality conditions used in the proof of 
Theorem  1 can be stated for every eigenfunction (𝑣,𝑤) ∈ 𝐻1

per (T) ×
𝐻1

per (T) of the spectral problem (18) with 𝜆 ≠ 0. Indeed, the two 
Fredholm constraints
0 = ⟨1,𝑤⟩ = 𝜆⟨1,𝑣⟩ = 𝜆⟨∗1, 𝑣⟩,
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0 = ⟨𝜂′,𝑣⟩ = 𝜆
(

⟨𝜂′,∗𝑤⟩ − 2𝑐⟨𝜂′,𝑣⟩
)

= 𝜆
(

⟨𝜂′, 𝑤⟩ + 2𝑐⟨𝜂′, 𝑣⟩
)

imply 
⟨(1 + 2𝜂), 𝑣⟩ = 0, ⟨𝜂′, 𝑤⟩ − 2𝑐⟨𝜂, 𝑣⟩ = 0. (35)

The first orthogonality condition in (35) is a linearization of the con-
straint (5). The second orthogonality condition in (35) is a linearization 
of the momentum conservation 𝑃 (𝜓, 𝜂) with the decomposition (10):
𝑃 (𝜓, 𝜂) = 𝑐⟨𝜂, 𝜂⟩ − ⟨𝜂𝑢, 𝜁⟩,

since (𝑣,𝑤) is the perturbation of the traveling wave with the profile 
(𝜂, 0) in variables (𝜂, 𝜁 ).

Remark 9.  It follows from the proof of Theorem  1 that the Jordan 
canonical form of 𝐵−1𝐴 at 𝜆 = 0 if  ′(𝑐) ≠ 0 is
⎛

⎜

⎜

⎜

⎜

⎝

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

.

If  ′(𝑐) = 0 and  ≠ 0, where the numerical coefficient  is given by 
(36) below, the Jordan canonical form of 𝐵−1𝐴 for 𝜆 = 0 is
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

4.  The leading order of unstable eigenvalues

We  study the splitting of the multiple zero eigenvalue of the 
spectral problem (18) for the values of 𝑐 close to a critical point of 
(𝑐) in Theorem  1. The following theorem gives the main result.

Theorem 2.  Under Assumptions  1 and 2,  assume that 𝑐0 ∈ (1, 𝑐∗) is
an extremal point of (𝑐) such that  ′(𝑐0) = 0,  ′′(𝑐0) ≠ 0, and  ≠ 0, 
where 
 ∶= ⟨𝜂′, 𝑤̃3⟩ − 2𝑐⟨𝐾𝜂, 𝑣̃3⟩ (36)

is defined from solutions of (32) computed from solutions of (29). Then, 
there is 𝜖0 > 0 such that for every 𝑐 ∈ (𝑐0, 𝑐0 + 𝜖0), the spectral stability 
problem (18) admits two (small) real eigenvalues ±𝜆(𝑐) with 𝜆(𝑐) > 0 near 
0 if  ′′(𝑐0) < 0 and two (small) purely imaginary eigenvalues ±𝑖𝜔(𝑐) with 
𝜔(𝑐) > 0 near 0 if  ′′(𝑐0) > 0. The real and purely imaginary eigenvalues 
are exchanged to the opposite if 𝑐 ∈ (𝑐0 − 𝜖0, 𝑐0).

Proof.  Since  ′(𝑐0) = 0 and 𝑐 ∈ (𝑐0 − 𝜖0, 𝑐0 + 𝜖0) for small 𝜖0 > 0, we 
expand 
 ′(𝑐) =  ′′(𝑐0)(𝑐 − 𝑐0) + ((𝑐 − 𝑐0)2) (37)

with  ′′(𝑐0) ≠ 0 due to our assumption. Let 𝜖 ∶= |𝑐 − 𝑐0| ∈ (0, 𝜖0)
be a small parameter.  Since only one Jordan block for the double 
eigenvalue is extended if  ′(𝑐0) = 0, see Remark  9, solutions to the 
spectral stability problem (18) are found by Puiseux expansion for the 
double zero eigenvalue: 
⎧

⎪

⎨

⎪

⎩

𝑣 = 𝜂′ +
√

𝜖𝑣1 + 𝜖𝑣2 + 𝜖
√

𝜖𝑣3 + 𝜖2𝑣4 + (𝜖2
√

𝜖),
𝑤 = 0 +

√

𝜖𝑤1 + 𝜖𝑤2 + 𝜖
√

𝜖𝑤3 + 𝜖2𝑤4 + (𝜖2
√

𝜖),
𝜆 = 0 +

√

𝜖𝜆1 + 𝜖𝜆2 + 𝜖
√

𝜖𝜆3 + 𝜖2𝜆4 + (𝜖2
√

𝜖),
(38)

where all correction terms are to be found recursively. Since the ad-
missible values of 𝜆1 are found at the order of (𝜖4) and the admissible 
values of 𝜆2, 𝜆3, etc are found at the higher orders of 𝜖, we will not 
write any correction terms related to 𝜆2, 𝜆3, etc. They are identical to 
the correction terms related to 𝜆 .
1

6 
At the order of (√𝜖), we obtain the linear inhomogeneous system 
(21) with 𝑎1 = 𝜆1 and 𝑎2 = 0, hence the solution is
𝑣1 = −𝜆1𝜕𝑐𝜂, 𝑤1 = 𝜆1𝜂,

in agreement with (22).
At the order of (𝜖), we obtain the linear inhomogeneous system (26) 

with 𝑎1 = 𝜆21 and 𝑎2 = 0. Recall that the solution of (26) exists if and 
only if  ′(𝑐) = 0, which is not the case if 𝑐 ≠ 𝑐0 due to 𝜖 ≠ 0. Therefore, 
we represent the solution of (26) in the form
𝑣2 = 𝜆21𝑣̃2, 𝑤2 = 𝜆21(𝑤̃2 + 𝛼),

where (𝑣̃2, 𝑤̃2) is a solution of the linear inhomogeneous system (29) 
uniquely defined under the orthogonality conditions (30) and 𝛼 ∈ R is 
a parameter to be determined from the orthogonality condition at the 
order of (𝜖2) due to Ker() = span(1).

At the order of (𝜖√𝜖), we obtain the linear inhomogeneous system,
{

𝑤3 = 𝜆31𝑣̃2,
𝑣3 = 𝜆31(−2𝑐𝑣̃2 +∗𝑤̃2 + 𝛼∗1).

(39)

which can be compared with (21) and (31). The solution exists in the 
form

𝑣3 = 𝜆31(𝑣̃2 − 𝛼), 𝑤3 = 𝜆31𝑤̃3,

where (𝑣̃3, 𝑤̃3) is a solution of the linear inhomogeneous Eq. (32) 
uniquely defined under orthogonality conditions (33).

At the order of (𝜖2), we obtain the linear inhomogeneous system, 
{

𝑤4 = 𝜆41(𝑣̃3 − 𝛼1),
𝑣4 = 𝜆41(−2𝑐𝑣̃3 +∗𝑤̃3) + 𝜆21𝜖

−1  ′(𝑐)
‖𝜂′‖2

𝜂′,
(40)

where the projection term came from the order (𝜖) in the linear 
inhomogeneous system (29). Since Ker() = span(1), the value of 𝛼 ∈ R
is uniquely found from the existence of the solution 𝑤4 ∈ 𝐻1

per (T) by 
the Fredholm theorem:

𝛼 =
⟨1,𝑣̃3⟩
⟨1,1⟩

= ⟨(1 + 2𝜂), 𝑣̃3⟩,

where we have used ⟨1,1⟩ = ⟨(1+2𝜂), 1⟩ = 1. Although 𝛼 is uniquely 
defined from the first equation of the system (40), it does not contribute 
to the second equation of the system (40) and therefore does not change 
the leading order of the unstable eigenvalues. Since Ker() = span(𝜂′), 
a solution 𝑣4 ∈ 𝐻1

per (T) to the second equation of the system (40) exists 
if and only if
𝜆41⟨𝜂

′, (−2𝑐𝑣̃3 +∗𝑤̃3)⟩ + 𝜆21𝜖
−1 ′(𝑐) = 0.

By using (36) and (37), we can rewrite the characteristic equation at 
the leading order as 
𝜆41 + 𝜆21sgn(𝑐 − 𝑐0)

′′(𝑐0) = 0, (41)

where  ≠ 0  due to our assumption. A nonzero solution for 𝜆1 exists 
since  ′′(𝑐0) ≠ 0  due to our assumption. For 𝑐 ∈ (𝑐0, 𝑐0 + 𝜖0), we have 
𝜆21 > 0 if  ′′(𝑐0) < 0 and 𝜆21 < 0 if  ′′(𝑐0) > 0. The sign of 𝜆21 is ex-
changed to the opposite if 𝑐 ∈ (𝑐0−𝜖0, 𝑐0). This concludes the proof. □

Remark 10.  When (𝑣̃2, 𝑤̃2) is obtained from the system (29) for 𝑐 ≠ 𝑐0, 
we add the additional term −  ′(𝑐)

‖𝜂′‖2
𝜂′ in the system (29) required by 

the Fredholm theorem. This term of order (𝜖) is compensated for by 
the term +𝜖−1  ′(𝑐)

‖𝜂′‖2
𝜂′ of order (𝜖2) in the system (40). The orders 

are consistent with the assumption  ′′(𝑐0) ≠ 0, which ensures that 
 ′(𝑐) = (𝜖).

Remark 11.  As Fig.  1 shows, the periodic wave with the even profile 
𝜂 ∈ 𝐶∞

per (T) is continued numerically with respect to the steepness 
parameter 𝑠. Based on the numerical observations in Fig.  1, there 
is exactly one fold point between each extremal point of (𝑐) or, 
equivalently, (𝑐), so that 𝑑𝑐  alternates its sign at each point, where 
𝑑𝑠
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Table 1
Parameters of Stokes waves at the first two extrema of energy  or, equiva-
lently, the horizontal momentum  with the coefficient  in (36). 
 𝑠 𝑐     
 0.13660354990 1.0921379 0.46517718146 0.44729319629 11.01822 
 0.14079654715 1.0922868 0.45770578965 0.44045605242 10.96232 

 ′(𝑐0) = 0. Similarly,  ′′(𝑐0) alternates its sign between the extremal 
points. Since we show numerically in Section 5 that the value of 
has the same sign for each instability bifurcation, the new pair of 
real (unstable) eigenvalues 𝜆 bifurcates in the direction of increasing 
steepness 𝑠 at each extremal point of (𝑐).

5. Numerical approximations

Stokes waves of large steepness are beyond the applicability of the 
small-amplitude expansions. Table  1 gives the first and second critical 
points of the energy  at steepness 𝑠1 and 𝑠2, which are also seen in 
Fig.  1. It is then necessary to use other approximations of Stokes waves 
with large steepness before the stability problem can be studied. There 
are two challenging problems that have to be treated numerically, the 
first one is obtaining a solution of the Babenko equation (12) with high 
accuracy, and the second one is finding eigenvalues of the stability 
problem (18). Once the eigenvalues are found, we can compare them 
with the leading order given by (41) to cross-validate numerics and 
theory.

5.1. The Babenko equation

We adopt the strategy from [25,27] to find Stokes waves numeri-
cally. The entire branch of Stokes waves is found by the continuation 
method with respect to the speed parameter 𝑐. Given a Stokes wave 
𝜂(0)(𝑢) with speed 𝑐(0) that solves (𝑐(0), 𝜂(0)) = 0, where  denotes the 
nonlinear Babenko equation (12), we apply Newton’s method to find a 
new solution (𝑐(1), 𝜂(1)). The initial approximation to Stokes wave with 
𝑐(1) is chosen to be 𝜂(0) + 𝛿𝜂 from the expansion 
0 = (𝑐(1), 𝜂(0) + 𝛿𝜂) = (𝑐(1), 𝜂(0)) + (𝑐(1), 𝜂(0)) 𝛿𝜂 +⋯ , (42)

where the neglected terms are quadratic and higher order in terms 
of 𝛿𝜂 and (𝑐(1), 𝜂(0)) is the linearized Babenko operator computed at 
the profile 𝜂(0) for the speed 𝑐(1). Once the nonlinear terms in (42) are 
neglected, the approximate equation for 𝛿𝜂 yields 
(𝑐(1), 𝜂(0))𝛿𝜂 = −(𝑐(1), 𝜂(0)), (43)

which is solved in the Fourier space by means of the minimum residual 
method [41] (MINRES). The linearized Babenko’s operator  is self-
adjoint in 𝐿2(T), however it is not positive definite. This makes MINRES 
the preferred method of computing solutions for the correction term 
(43). Once the linear system in (43) is solved, the approximate solution 
is updated via 𝜂(0) → 𝜂(0) + 𝛿𝜂, and the new 𝛿𝜂 is found from (43) with 
updated 𝜂(0). This algorithm is repeated until a convergence criterion 
‖𝑆(𝑐(1), 𝜂(0) + 𝛿𝜂)‖𝐿2 ≤ 10−28 is reached, at which step we assign 𝜂(1) =
𝜂(0)+𝛿𝜂 for this value of 𝑐(1). For variable precision arithmetic, the GNU 
MPFR [42] and GNU MPC [43] libraries are used, and the fast Fourier 
Transform (FFT) C library is written based on [44]. The convergence 
rate of Fourier series is improved by means of auxiliary conformal 
mapping based on Jacobi elliptic function, see [45] and applications 
of this method in [27].

5.2. Generalized eigenfunctions

We construct the eigenfunctions in the proof of Theorem  1 using a 
variant of orthogonal projection algorithm programmed in double pre-
cision arithmetic. Afterwards, the chain of generalized eigenfunctions 
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is found by numerically solving linear inhomogeneous systems with the 
preconditioned MINRES. A symmetric positive definite preconditioner 
is defined by the strictly positive operator (1+𝑐2) to improve the linear 
solver convergence rate.

Fig.  2 shows the three generalized eigenfunctions of the Jordan 
chains (𝑣1, 𝑤1), (𝑣2, 𝑤2), and (𝑣3, 𝑤3) defined via the linear inhomoge-
neous systems (21) with 𝑎 = 1, 𝑎2 = 0, (29), and (31) for the Stokes 
wave at the first two extrema 𝑠1 and 𝑠2 of the energy in Table  1.

Fig.  3 illustrates the convergence rate of the preconditioned MINRES 
for the system (29) to find the eigenfunction (𝑣2, 𝑤2) for Stokes waves 
at 𝑠1 and 𝑠2. The number of Fourier modes to represent the Stokes wave 
and the (generalized) eigenfunctions on a uniform grid is 𝑁 = 8192 at 
𝑠1, and 𝑁 = 262144 for 𝑠2.

5.3. Finding eigenvalues of the stability problem

Eigenvalues of the stability problem can be found from numerically 
solving the eigenvalue problem (18), or equivalently, the quadratic 
pencil problem
[

∗−1𝜆2 − 2𝑐𝜆 − 
]

𝑣 = 0,

where −1 is defined under the orthogonality condition ⟨(1+2𝜂), 𝑣⟩ =
0, see (35). The quadratic pencil problem was used in [25] for co-
periodic perturbations and in [26,29] for subharmonic perturbations 
via the Bloch-Floquet theory (see also [46] for the numerical Hill 
method). A new pair of eigenvalues collide at each extrema of the 
energy. The collision occurs at the origin in the spectral plane, and 
the eigenvalues become real as shown in Fig.  4 (right panels). It is 
convenient to show the square of eigenvalue 𝜆2(𝜀) as a function of 𝜀 =
𝑐 − 𝑐0 and compare it to the leading order (41) to cross validate theory 
and numerics. We do so in Fig.  4 (left panels). The direct computation 
of eigenvalues is obtained via the shift-and-invert method.

Remark 12.  It is interesting to note that the values of the coefficient 
 are surprisingly close at both extrema of the energy, see Table 
1. The coefficient  is uniquely defined by (36) computed from the 
Puiseux expansion (38). A further investigation is needed to check if 
this behavior is universal for all extremal points of the energy.

6. Conclusion

We summarize the main outcome of this work. We have used confor-
mal variables for the two-dimensional Euler’s equation in an infinitely 
deep fluid and computed  the leading order of the unstable eigenvalues 
arising from the zero eigenvalue bifurcation  of the Stokes waves with 
respect to co-periodic perturbations. The zero eigenvalue bifurcation 
occurs at every extremal point of the energy or, equivalently, the 
horizontal momentum.  The leading order of the unstable eigenvalues 
computed numerically shows that the new unstable eigenvalues emerge 
in the direction of the increasing steepness of the Stokes wave.

This work opens the road to analytic understanding of bifurcations 
of the unstable spectral bands in the modulational instability of Stokes 
waves by using the Bloch–Floquet theory. Numerical results have been 
computed recently in [28,29] and show interesting transformations 
of the spectral bands when the real unstable eigenvalues bifurcate in 
the space of anti-periodic and co-periodic perturbations. The figure-∞
instability arises at the co-periodic instability bifurcation, and this 
transformation is described by the characteristic equation which ex-
tends the leading-order approximation (41) by the parameter of the 
Bloch–Floquet theory. Details of the derivation of the characteristic 
equation are currently in progress. The recent work [47] describes a 
similar transformation to the figure-∞ instability in the local model 
of the focusing modified Korteweg–de Vries equation, which has been 
studied by using integrability of the model.
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Fig. 2. The generalized eigenvectors (𝑣1, 𝑤1), (𝑣2, 𝑤2) and (𝑣3, 𝑤3) defined via Eqs. (21) with 𝑎1 = 1, 𝑎2 = 0, (29) and (31) (top to bottom) for the first two critical 
points of the energy at 𝑠1 = 0.13660354990 (left) and 𝑠2 = 0.14079654715 (right).

Fig. 3. An example of numerical convergence of the iterative method for (𝑣2, 𝑤2) for the Stokes waves at 𝑠1 = 0.13660355 (left) and 𝑠2 = 0.1407965471 (right). 
The relative 𝐿2 norm of the residual is shown versus the iteration number.
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Fig. 4. Top left shows 𝜆2(𝜀) obtained from numerical solution of the stability problem (18) (red dots), and evaluating the leading order (41) (green line) with 
𝜆21 = 29.4871 ( = 11.01822); and top right shows a pair of real eigenvalues appearing from a collision of two imaginary eigenvalues for 𝑐 − 𝑐0 = 𝜀 = −3.93 × 10−5, 
𝜀 = −1.85×10−5, 𝜀 = −4.23×10−6 (gold, orchid and green triangles respectively), 𝜀 = 0 (red circle), 𝜀 = 4.17×10−6, 𝜀 = 1.78×10−5 and 𝜀 = 3.75×10−5 (green, orchid 
and gold diamonds respectively). Bottom row shows the associated quantities at the second extremum with 𝜆21 = −2424.9 ( = 10.96232) and 𝑐−𝑐0 = 𝜀 = 6.23×10−7, 
𝜀 = 3.23 × 10−7 (orchid and green triangles respectively), 𝜀 = 0 (red circle), 𝜀 = −2.77 × 10−7 and 𝜀 = −6.77 × 10−7 (green and orchid diamonds respectively).
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