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We address Euler’s equations for irrotational gravity waves in an infinitely deep fluid rewritten in conformal
variables. Stokes waves are traveling waves with the smooth periodic profiles. In agreement with the previous
numerical results, we give a rigorous proof that the zero eigenvalue bifurcation in the linearized equations of
motion for co-periodic perturbations occurs at each extremal point of the energy function versus the steepness
parameter, provided that the wave speed is not extremal at the same steepness. We derive the leading order
of the unstable eigenvalues and, assisted with numerical approximation of its coefficients, we show that the
new unstable eigenvalues emerge only in the direction of increasing steepness.

1. Introduction

Ocean swell can be viewed in many cases as a train of almost
periodic traveling waves propagating along a fixed direction. Under-
standing stability properties of periodic wave trains is central to wave
forecasting. Such periodic traveling waves were originally found by
Stokes [1,2], and hence they are often referenced as the Stokes waves.
The existence of Stokes waves with smooth profiles was proven in [3-
5]. The existence of the limiting wave with the peaked profile was
proven in [6-8].

The stability of Stokes waves is studied either with respect to
perturbations co-periodic with the underlying wave (superharmonic),
or in a wider space of perturbations periodic with longer periods (sub-
harmonic). In the latter case, the modulational instability, also known
as the Benjamin-Feir instability [9,10], is recovered. The modulational
instability of Stokes waves was studied rigorously in [11-15]. The
high-frequency instabilities discovered in [16] and theoretically studied
in [17,18] have the same modulational nature.

Whether subharmonic or superharmonic, the stability properties of
traveling waves can be efficiently studied in the limit of small ampli-
tude [19] where the small-amplitude expansions of the Stokes waves
offer accurate approximations. For Stokes waves of high steepness and
for the limiting wave (with a 2z /3 crest angle), the series expansion
diverges and numerical methods must be used instead. Numerical
solution of the eigenvalue problem for stability of Stokes waves on a
surface of an infinitely deep fluid goes back to [20-22]. In [23,24] the
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stability problem is treated as an eigenvalue problem for a large ma-
trix in Fourier basis and is restricted to superharmonic perturbations.
Recently, it was realized that the stability spectrum can be determined
more efficiently via matrix-free methods [25,26] allowing to extend the
stability analysis to nearly limiting Stokes waves [27], and include the
Bloch-Floquet theory to cover subharmonic perturbations [28,29].

Fig. 1 presents a schematic dependence of the energy £ (green) and
the speed ¢ (red) of the traveling periodic wave continued with respect
to the steepness parameter s [24-29], see also [20-22] for the early
numerical results suggesting the same behavior of energy and speed
versus the steepness. The family of traveling periodic waves bifurcates
from the small-amplitude limit (§ = 0,¢y) at s = 0 and oscillates
towards the point (&, ¢;;m), Which corresponds to the limiting wave
with the peaked profile for the limiting steepness s;,,, see [6-8]. A
striking aspect of this figure is that every extremal point of the energy
corresponds to an instability bifurcation in the co-periodic stability
problem, indicated by the presence of a zero eigenvalue with higher
algebraic multiplicity compared to the multiplicity imposed by the
symmetries of the water wave equations. When the steepness of the
periodic wave is increased past the extremal point of the energy, a
new pair of real eigenvalues bifurcates in the spectrum of the co-
periodic stability problem. It is conjectured in [29] that the family
of traveling periodic waves displays infinitely many oscillations with
infinitely many instability bifurcations before reaching the limiting
peaked wave.
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Fig. 1. Oscillations of the energy (green) and the speed (red) as the limiting wave is approached. The figure illustrates &, — € and ¢;;,, — ¢ as a function of s, —s,
where s;,,, &, and ¢y, represent the steepness, the energy, and the speed of the limiting wave wiht the peaked profile. The black circles mark the extreme

points of the energy, where the instability bifurcation occurs.

The main purpose of this paper is to give a rigorous proof that
the instability bifurcation occurs exactly at each extremal point of the
energy. Moreover, we show that the extremal points of the energy
coincide with those of the horizontal momentum. If the zero eigenvalue
has generally geometric multiplicity two and algebraic multiplicity four
due to symmetries of the water wave equations, we show that the zero
eigenvalue has geometric multiplicity two and algebraic multiplicity of
at least six at the instability bifurcation point. This result is given by
Theorem 1. In addition, we compute the leading order of the unstable
eigenvalues in the co-periodic stability problem and, assuming nonzero
coefficients of the leading order, we prove that the new unstable
eigenvalues emerge only in the direction of increasing steepness. This
result is given by Theorem 2.

For the technical parts of the proofs, we adopt conformal variables
for the two-dimensional fluid dynamics developed in [30-34] and used
in [23-26] for spectrally accurate numerical approach to the stability
problem. The conformal variables allow us to write the problem of find-
ing Stokes wave as a pseudo-differential nonlinear equation [33,35,36],
and formulate the stability problem as a matrix-free pseudo-differential
eigenvalue problem with periodic coefficients [25,26]. The conserved
quantities of the water wave equations [37] are rewritten in conformal
variables and impose constraints on solutions of the co-periodic stabil-
ity problem. Computations of the Jordan blocks and Puiseux expansions
for multiple eigenvalues are performed in compliance with the con-
straints, which act as the Fredholm solvability conditions for solutions
at each order of the perturbation theory. Since justification of the
Puiseux expansions is fairly known for linear eigenvalue problems [38],
we will focus on actual computations rather than on the justification
analysis.

The main result of Theorem 1 has been well understood in the
dynamics of fluids, based on the numerical results [20,21] and the
formal analytical computations [39,40]. Compared to these earlier
works which were based on Zakharov’s equations of motion [10], we
develop the analysis of equations of motion in conformal variables by
exploring Babenko’s pseudo-differential equation [33] and its lineariza-
tion. We also go beyond the criterion for the instability bifurcation
and compute the leading order of the unstable eigenvalues. Using
much more elaborate numerical computations, we confirm that the
coefficients of the leading order satisfy the assumptions of our theory.

The paper is organized as follows. Equations of motion in physical
and conformal variables are formulated in Section 2 as well as the
conserved quantities and the description of the existence and stability
problems for the Stokes waves. Section 3 presents the main result on
the co-periodic instability bifurcation (Theorem 1). Section 4 presents

the leading order of the unstable eigenvalues (Theorem 2). Section 5
contains numerical approximations of eigenfunctions and eigenvalues
at the instability bifurcation to confirm the main prediction that every
instability bifurcation generates a new unstable eigenvalue in the di-
rection of the increasing steepness. Further questions are discussed in
Section 6.

2. Equations of motion in conformal variables

Let y = 5(x, t) be the profile for the free surface of an incompressible
and irrotational deep fluid in the 2z-periodic domain T and in time
t € R. For a proper definition of the free surface, we add the zero-mean
constraint fT n(x,t)dx = 0, which is invariant in the time evolution of
Euler’s equations with a free surface.

Let ¢(x,y,t) be the velocity potential, which satisfies the Laplace
equation in the time-dependent spatial domain

D) :={(.y) €R*: x€T, -co<y<nx.n}

subject to the periodic boundary conditions on T and the decay condi-
tion as y — —oo. The Euler’s equations are completed by two additional
(kinematic and dynamic) conditions at the free surface y = 5(x, 1):

Ny + Pxlyx — (py = Os t ( ) (1)
1 1 at y=n(x,1),
@+ 5(%)2 + 5<¢y>2 +7=0,

where the gravity constant g is set to unity for convenience.

Consider now a holomorphic function z(u, 7) = &(u, t) + in(u, t), which
realizes a conformal mapping of the vertical strip in the lower complex
half-plane u € T X i(—o0,0] to the fluid domain z(-,#) € D(r) beneath
the free surface. The top boundary Imu = 0 gives the free surface in
parametric form x = &(u, 1) and y = 5(u, t) written in variables u € T and
t € R with ¢ = u — Hn, where H is the periodic Hilbert transform in
L?(T) normalized by the Fourier symbol

r _ J isgn(n), neZ\{0},
H, = { 0, n=0.

We also define a positive self-adjoint operator X = —Hd, = |9,| in L*(T)
with the domain H pler (T) and the Fourier symbol

l@,, =|n|, neZ.

It follows from ¢ = u — Hy that

(&, =1+Kn and ¢ =-Hpy,.
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The mean value of  in variable u € T might be a function of timer € R
but plays no role in the equations of motion.

By using the constrained Lagrange minimization, see [34] and [36,
Appendix A], the system of Euler’s equations in physical coordinates
(1) can be rewritten as the following system of pseudo-differential
equations for the surface velocity potential y(u,1) = @(&(u,1),n(u,1),1),
and the free surface elevation #(u, r) defined at the top boundary Imu =
0:

{ n,(1 + Kn) + n,Hn, + Hy, =0,

2)
Willy — Wt + 1, + H ((L+ Ky, +w, Hn, +n(1+ Kn)) = 0.

The system (2) is the starting point of our work. In the rest of this sec-
tion, we review the conserved quantities, the traveling wave formula-
tion, the existence problem for traveling waves, and the linear stability
problem for traveling waves with respect to co-periodic perturbations.

2.1. Conserved quantities

Taking the mean value of the two equations in system (2) yields the
existence of the following two conserved quantities:

M(n)=/'1(1+/C'1)du, 3
T

Ply.n) = - /T wdu @

Due to the zero-mean constraint fT n(x,t)dx = 0 on the surface elevation
n and the chain rule dx = (1 + Kn)du, we get the constraint M(n) = 0,
or explicitly

/ n(l + Kn)du = 0. (5)
T

With the constraint M (n) = 0, another conserved quantity follows from
the second equation in system (2):

Q(W,n)=/w(1+lcﬂ)du, ©
T

which corresponds to the conserved mean value of the potential y on
the surface in physical variable x € T due to the chain rule dx =
(1+ Kn)du.

The conserved quantities (3), (4), and (6) follow from the general
study of symmetries and conserved quantities for Euler’s equations
in physical coordinates in [37], where M (), P(y,n), and Q(y,n) are
referred to as mass, the horizontal momentum, and the vertical momentum.
The same list of conserved quantities in the conformal variable u € T
can also be found in [34]. The two components of momentum can be
expressed in the complex form

Q—[P=/1//zudu, @
T

where z, =&, +in, =1+ Kn+in,.

To derive the energy conservation, we use the zero-mean constraint
(5) and the conservation of Q(y,#n) in (6). Applying H to the second
equation of system (2) with H?> = —Id in the space of 2z-periodic
function with zero mean, we obtain

v, (1 + Kn) + w, Hn, + (1 + Kn) = H(w,n, — w1, +nn,) = 0. (8)

Multiplying the first equation of system (2) by w, and Eq. (8) by
n;, integrating over the period of T, and subtracting one equation
from another, we integrate by parts and obtain the conserved energy
(Hamiltonian) in the form:

H(y,n) = %/T(WICW+112(1 +Kn)) du. )

The energy H(y,#) is the main quantity in the stability analysis of the
traveling waves.
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2.2. Formulation of equations of motion in the traveling frame

Let us write the first equation of system (2) and Eq. (8) in the
reference frame moving with the wave speed c:

{ n(L+Kn) + n,Hu, + Hy,, — en, =0,

v (1+ Kn) +y, Hay, +n(1 + Kn) — ey, — H(wn, — w1, +1m,) =0,
where u now stands for u — ct. Let us introduce the following change of
variables by

w=—cHn+¢, (10)
after which the equations of motion yield,

n,(1+ Kn)+n,Hn, + H, =0,
G+ Kn)+ & Hy, + (1 + Kn) — g, — cHn, — c2Kn
—H (& = Cutty + mm, — enHn, — en k) = 0.

Substituting ¢, = H(y,(1 + Kn) + n,Hn,) from the first equation to the
second equation transforms the system of evolution equations to the
final form:

n,(1+ Kn) +n,Hn, = K¢,
G+ o) + E M, = HGn, = Eun) = 2cHn, = (2K = 1) n = nky = 1Kn?.

an

We are now ready to set up the existence and linear stability problems
for traveling waves.

2.3. Existence of traveling waves

Traveling waves correspond to the reduction ¢ = 0 for the time-
independent solutions of system (11). This gives the scalar pseudo-
differential Babenko’s equation [33] for the profile n = n(u):

K-y = %Ian + nKn. 12)

This equation can be obtained as the Euler-Lagrange equation for the
action functional

A 1= SUEK = D) = 2UCPn), 1€ HL (D), 13)

where (f,g) := 21—” Jp fwgwydu is a standard normalized inner
product in L*(T). We make the following assumption of existence of
traveling waves.

Assumption 1. There exists a family of smooth traveling waves with
the even profile # € Coar(D) satisfying the Babenko equation (12) for
c € (1,c,) with some ¢, > 1.

Remark 1. The point ¢ = 1 is the bifurcation point of the 2z-periodic
solutions with the even single-lobe profile from the zero solution of
the Babenko equation (12). It is easy to show, see [19,34,36], that
2 =1+ a*+ O and n(u) = acos(u) + O(a?), where a is the small
amplitude (steepness) of the 2z-periodic solutions.

Remark 2. As suggested in Fig. 1, the profile n € Coor(T) is better
parameterized by the steepness, s, rather than the speed, ¢, because the
dependence of speed ¢ on s is oscillatory towards the limiting wave. The
details of this dependence are not important for the stability analysis as
long as the zero eigenvalue bifurcation (at the extremal point of energy)
is different from the extremal point of speed, see Assumption 2.

2.4. Linear stability of traveling waves
Expanding system (11) for (n,¢) near the traveling wave with the

profile (,0) and truncating the system at the linear terms with re-
spect to the co-periodic perturbation (v, w), we obtain the linearized
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equations of motion (also derived in [25]):

{ ﬁi}:ﬂ, —2cHv, = f::)’ as)
where

M:=1+Knp+yH and M*:=1+Kn-H@ ),

and

L=~ 1-Kn—nk-K@ ). 1s)

We note that M* is the adjoint operator to a bounded operator M
in L%(T) with respect to (-,-) and that £ is a self-adjoint unbounded
operator in L*(T) with Dom(£) = leer(']l‘). Furthermore, £ is the
linearized operator of the Babenko equation (12). Also recall that X
is a self-adjoint unbounded operator in L*(T) with Dom(K) = H! (T).

per
It is clear from the Fourier series that K1 = 0, and Ker(X) = span(1).

Remark 3. It follows from the translational symmetry of the Babenko
equation (12) that £’ = 0 with ' € H [}er(T) under Assumption 1. We
also note that

L£1=-(1+2Kn), (16)
which is useful in our computations.

Separating variables in the linearized system (14) yields the spectral
stability problem with respect to co-periodic perturbations,

Kw = iMuo,
{ Lou = MM*w — 2cHv), an

where (v, w) € chr(T) X Hscr(’JI‘) is an eigenfunction and 4 € C is an
eigenvalue.

Remark 4. There exist two linearly independent eigenfunctions in
the kernel of the spectral stability problem (17) due to the following
two symmetries of the underlying physical system. A spatial translation
of the Stokes wave results in another solution of the Babenko equa-
tion (12), and is associated with a one-dimensional subspace spanned
by the eigenfunction (v, w) = (', 0). Similarly, the fluid potential admits
gauge transformation w(u, 1) — w(u, 1)+ (t) for any function y(r). This
property is associated with a one-dimensional subspace spanned by the
eigenfunction (v, w) = (0, 1).

3. Criterion for instability bifurcation

We rewrite the spectral stability problem (17) in the matrix form

<2 I§> <Z,> = <—$cAH J\?l> <Z> as)

which is rewritten as the generalized eigenvalue problem of the form
AX = ABX with
At H)(T)x H) (T) - L*(T) x LX(TD),

B : L3(T)x L*(T) » L*(T) x L*(T),

given by

0 K M 0
A‘(z: o>’ B_<—2c7—[ M)

and X = (v,w) € leer(’]I‘)prler(T). Since the embedding of Héer (T) into
L2(T) is compact, the resolvent operator (A—AB)~! is compact, and the
spectrum of the spectral stability problem (18) consists of eigenvalues

with finite algebraic multiplicity.

Remark 5. The bounded operator M : L*(T) — L2(T) is invertible
with the explicit formula for the inverse operator, see [25, Eq. (13)].
Hence, the bounded operator B : L%(T)x L*(T) — L3(T) x L%(T) is also
invertible so that the generalized eigenvalue problem AX = ABX in (18)
can be rewritten as the linear eigenvalue problem B~!AX = AX.
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The geometric multiplicity of 4 = 0 is defined by the dimension of
Ker(A). The algebraic multiplicity of 4 = 0 is defined by the length of
the Jordan chain of generalized eigenvectors

A% =0,
AZ, = B,

AZ, = B,

as long as X, X1, X,, ... € H;er(’]I‘)XHI}er(T). In what follows, we compute
the Jordan chain of 4 = 0 for the particular operators A and B in (18).

3.1. Eigenvectors of (18) for A =0 due to the symmetries

Since K£1 = 0 and £’ = 0, the null space of the unbounded operator
A H) (D)X H) (T) — L*(T)x L*(T) is at least two-dimensional with

per

<;>=”l<g>+”2<?>’ (19)

where (a;,a,) € R2. Due to the Hamiltonian symmetry, see (21)
and (22) below, the generalized null space of the spectral stability
problem (18) is at least four-dimensional with at least two generalized
eigenfunctions.

Definition 1. We say that the periodic wave with the profile n €
Coar(D) is at the stability threshold if the generalized null space of
the spectral stability problem (18) has algebraic multiplicity exceeding
four.

Hypothetically, the stability threshold of Definition 1 can be hit
if either the null space of A becomes at least three-dimensional or
the null space of A remains two-dimensional but the generalized null
space of B~! A becomes at least six-dimensional. Since Ker(K) = span(1),
the first possibility could only be realized if £ has a double zero
eigenvalue, which is indeed observed numerically in [25]. However,
it was realized in [21,39] (see also [29]) that the points of the double
zero eigenvalue of £ correspond to the fold points in the dependence
of speed ¢ versus steepness s, see the red curve in Fig. 1. In this
case, the family of solutions of the Babenko equation (12) fails to
continue with respect to parameter ¢, but the generalized null space of
the spectral stability problem (18) still has the algebraic multiplicity
equals to four. Therefore, the stability threshold of Definition 1 can
only be realized away from the fold points, which are eliminated by
the following assumption.

Assumption 2.
span(r’).

For the given value of ¢ € (1,¢,), we have Ker(£) =

Remark 6. It follows from Assumption 2 that the mapping ¢ - n €
CI‘)’;('JI‘) is smooth, since the profile of 5 is even and the kernel of L is
spanned by the odd eigenfunction »’. Hence, we can differentiate the

Babenko equation (12) in ¢ and obtain
L£o.n+2cKn=0, = d.n=-2cL""Kny, (20)

where d,n € C2(T) and £~! is uniquely defined on the subspace of

per
even functions in L%(T).

Under Assumption 2, the periodic solutions to AX, = 0 are spanned
by (19). The first element of the Jordan chain AX;, = BX is defined
by the periodic solutions (v;,w;) € H;er(']l‘) X H;ﬂ('ﬂ‘) of the linear
inhomogeneous equations:

=a My,

Kw,
21
{ Lv;  =-2cayHn' +ayM*1. (21)
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Since Mr' = n' and (1,7') = 0, there exists w; € Dom(K) from the
first equation in the system (21). For unique definition of w,, we take
projection of w, to 1 to be zero, after which we get w; = a;Hn. Since n
is even, both Hn and 5’ are odd. Hence, ' has opposite parity compared
to Hn' and M*1 = 1 + 2Kn so that there exists v; € Dom(£) from the
second equation in the system (21). For unique definition of v;, we
take projection of v; to n’ to be zero. By using (16) and (20), we get
the explicit solution v; = —a,d,n— a,, where 9.4 is even and Hn is odd.
Thus, the periodic solutions to the first element of the Jordan chain
AX, = BX, are spanned by

-9 -1
(n)=a (G )ee(0) @)

so that the generalized null space of the spectral stability problem (18)
is at least four-dimensional with at least two generalized eigenfunc-
tions.

3.2. Eigenvectors of (18) for A =0 due to the zero eigenvalue bifurcation

In what follows, we compute the second element of the Jordan chain
AX, = BX, and obtain the criterion for the generalized null space of the
spectral stability problem (18) to be at least six-dimensional. To do so,
we define the wave momentum P(c) and the wave energy £(c) related
to the wave profile n € C*® (T) as

per

P(c) := P(y = —cHn,n) = c{(Kn,n) (23)
and

2
E(c) := H(y = —cHn,n) = %(lCn,m + %(nz,(l + Kn)), 24)

where P(y,n) and H(y,n) are given by (4) and (9).
The following theorem presents the main result on the criterion for
instability bifurcation.

Theorem 1. Under Assumptions 1 and 2, the generalized null space of
the spectral problem (18) is at least six-dimensional if and only if P'(c) =0
or, equivalently, &' (c) = 0.

Proof. The second element of the Jordan chain AX, = BX, is defined
by the periodic solutions (v,,w,) € ng () x lee ,(T) of the linear
inhomogeneous equations:

{ f:;z = ﬁ/zli;-’lvl + M*w. (25)

The system (25) is written explicitly as

{ Kw, =-a;Mo.n—aMl, 26)
Lv,  =2caHo.n+ a M Hn.

Since

(LMf)= (M1, f) ={0+2Kn), f),
W' My =My f)y =, f),
' HfY=—(HA', [y =(Kn, ),

Fredholm theorem implies that there exist periodic solutions of the
linear inhomogeneous system (26) if and only if the following linear
homogeneous system on (a,,a,) admits a nonzero solution:

< —((1+2Km).0.m) (1 +2Kn), 1>> <a1> - <0> @7
(', Hn) +2¢(Kn, d.n) 0 ay 0

Taking derivative of the constraint (5) with respect to ¢ yields
((1+2Kn), d,n) = 0.

On the other hand, since K is self-adjoint and K1 = 0, we have

(1,Kn) =(K1,n1) =0.
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Hence, the linear system (27) can be rewritten in the equivalent form
as

0 =1\ (a;\ _ (O
((n, Kn) +2¢(Kn,0.n) 0 > (az) B <0>'

Thus, a, = 0, whereas a; # 0 if and only if
0= (Kn,n) +2c(Kn,0.n) = %C(Kfﬂ, n) =7P(c). (28)

In the case of P’'(c) = 0, the periodic solutions to the second element
of the Jordan chain AX, = BX, are represented in the form (v,, w,) =
ay(By, W) for a, = 0, where (6,,@,) € H)(T) x H,, (T) are uniquely
defined from solutions of the linear inhomogeneous equations

K, =-Moa,.n, .
/(o
L0,  =2cHon+ MHn— @fﬁ; ", 29
subject to the orthogonality conditions
(1,,)=0 and (n,,)=0. (30)

To prove that the generalized null space of the spectral problem
(18) is at least six-dimensional, we consider the third element of the
Jordan chain AX; = BXx, defined by the periodic solutions (v;,w;) €

1 1 . . .
HPST(T) X Hper(T) of the linear inhomogeneous equations

=aMb,,

Kws;
k 1
{ Lu; = —2caHv, + ay M* ;. @D

Since 5 is even and operators K, M and L are parity preserving, we
obtain from (29) and the orthogonality conditions (30) that @, is even
and 0, is odd. Hence, odd M@, is orthogonal to even 1 and even
—2cH b, + M*i, is orthogonal to odd #’. By Fredholm’s theorem, the
periodic solutions to the third element of the Jordan chain AX; = BX,
are represented in the form (v;,w;) = a,(03,W3), where (73, 1;) €
H! (T) x H! (T) are uniquely defined from solutions of the linear

per per
inhomogeneous equations

Kby = Mb,,
: 2
{ Loy = —2cHDy + M Dy, (32)
subject to the orthogonality conditions
(1,3) =0 and (n',5;)=0. (33)

From the same parity argument and the orthogonality conditions (33),
we conclude that @; € leer('ll‘) is odd and #; € H;ﬂ(’]l’) is even.
Thus, the generalized null space of the spectral problem (18) is at least
six-dimensional if and only if P’(c) = 0.

It remains to show that the critical points of P(c) coincide with the
critical points of the energy £(c). Differentiating the action A, () given

by (13) in ¢ yields
d 1
Za At = e(Kn,m) + ((c*Ken —n - 51012 —nkn),d.n) = P(c), 34

where the quantity in the brackets vanishes due to the Babenko equa-
tion (12). Since A.(n) = ¢P(c) — £(c), we obtain

4 A () = Pe)+cP'(e) - €'(0),
de

which yields &'(c) = ¢P'(c). O

Remark 7. We have added the orthogonal projection to the second
equation of system (29) even though P’(c) = 0. This is useful for
numerical approximations as well as for the derivation of the leading
order of the unstable eigenvalues in Theorem 2.

Remark 8. The two orthogonality conditions used in the proof of
Theorem 1 can be stated for every eigenfunction (v,w) € H ;ET(T) X

leer(T) of the spectral problem (18) with A # 0. Indeed, the two
Fredholm constraints

0= (1, Cw) = K1, Mv) = (M*1,v),
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0={(y.Lv)=41 ((r]', MFAw) — 2C(ﬂ/,HU>) =1 ((Mr]', w) +2¢(Hy', U))
imply
(A +2Km,0) =0, (5, w) —2¢(Kn, v) = 0. (35)

The first orthogonality condition in (35) is a linearization of the con-
straint (5). The second orthogonality condition in (35) is a linearization
of the momentum conservation P(y,n) with the decomposition (10):

P(y.n) = c(Kn.n) = (n,,{)s
since (v, w) is the perturbation of the traveling wave with the profile

(n,0) in variables (, {).

Remark 9. It follows from the proof of Theorem 1 that the Jordan
canonical form of B-'4 at A =0 if P'(c) #0 is

0o 1 0 O
0o 0 0 O
0 0 o0 1|
0o 0 0 O

If P'(c) = 0 and B # 0, where the numerical coefficient B is given by
(36) below, the Jordan canonical form of B~'A for A =0 is

0O 1 0 0 0 O
0 0 1 0 0 O
0 0 0 1 0 O
0o 0 0 0 0 O
0 0 0 0 0 1
o 0 0 0 0 O

4. The leading order of unstable eigenvalues

We study the splitting of the multiple zero eigenvalue of the
spectral problem (18) for the values of ¢ close to a critical point of
P(c) in Theorem 1. The following theorem gives the main result.

Theorem 2. Under Assumptions 1 and 2, assume that ¢, € (1,c,) is
an extremal point of P(c) such that P'(cy) = 0, P"(cy) # 0, and B # 0,
where

B 1= (1 ,03) — 2¢(Kn, 3) (36)

is defined from solutions of (32) computed from solutions of (29). Then,
there is ¢y > 0 such that for every ¢ € (cy,cy + €), the spectral stability
problem (18) admits two (small) real eigenvalues +A(c) with A(c) > 0 near
0 if BP"(cy) < 0 and two (small) purely imaginary eigenvalues +iw(c) with
w(c) > 0 near 0 if BP"(cy) > 0. The real and purely imaginary eigenvalues
are exchanged to the opposite if ¢ € (¢y — €y, ¢g).

Proof. Since P’'(cy) = 0 and ¢ € (¢y — €, ¢y + €) for small ¢, > 0, we
expand

P'(c) = P"(co)(c = co) + O(c = ¢g)?) 37)

with P”(cy) # 0 due to our assumption. Let € := |c—cy| € (0,¢)
be a small parameter. Since only one Jordan block for the double
eigenvalue is extended if P’(c;) = 0, see Remark 9, solutions to the
spectral stability problem (18) are found by Puiseux expansion for the
double zero eigenvalue:

v =1+ /ev, + ev, + er/evy + e2vy + O(e? /o),
w =0+ \Jew, + ew, + erfew; + 2w, + Oe*\/e), (38)
A= 0+ el + ey +erfeds + €Ay + O3 /e),

where all correction terms are to be found recursively. Since the ad-
missible values of A, are found at the order of O(e*) and the admissible
values of 4,, 43, etc are found at the higher orders of ¢, we will not
write any correction terms related to 4,, 43, etc. They are identical to
the correction terms related to 4,.
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At the order of (9(\/2), we obtain the linear inhomogeneous system
(21) with a; = 4, and a, = 0, hence the solution is

v = —4,0.71, w; = A Hn,

in agreement with (22).

At the order of O(¢), we obtain the linear inhomogeneous system (26)
with a; = Af and a, = 0. Recall that the solution of (26) exists if and
only if P'(c) = 0, which is not the case if ¢ # ¢, due to € # 0. Therefore,
we represent the solution of (26) in the form

vy =220y wy = AW, +a),

where (&, ,) is a solution of the linear inhomogeneous system (29)
uniquely defined under the orthogonality conditions (30) and « € R is
a parameter to be determined from the orthogonality condition at the
order of O(e?) due to Ker(X) = span(1).

At the order of O(e \/E), we obtain the linear inhomogeneous system,

Kuws

Lus
which can be compared with (21) and (31). The solution exists in the
form

= A3 Mb,,

39
= A (=2cHD, + M* Dy + aM*1). (39)

vy = A0 - a),

where (J;,103) is a solution of the linear inhomogeneous Eq. (32)
uniquely defined under orthogonality conditions (33).
At the order of O(¢*), we obtain the linear inhomogeneous system,

Kw,
Lu,

where the projection term came from the order O(e¢) in the linear
inhomogeneous system (29). Since Ker(K) = span(1), the value of « € R
is uniquely found from the existence of the solution w, € Hp'er(’]I‘) by
the Fredholm theorem:
(1. M)
Q= —7=
(1, M1)

where we have used (1, M1) = ((14+2K#n), 1) = 1. Although « is uniquely
defined from the first equation of the system (40), it does not contribute
to the second equation of the system (40) and therefore does not change
the leading order of the unstable eigenvalues. Since Ker(£) = span(y’),
a solution v, € H, l;er(T) to the second equation of the system (40) exists
if and only if

= (M5 — aMl),
i 5 e 2 1P (40)
= A{(=2cHD3 + M 03) + Aje e

= (1 +2Kn), 53),

A (~2cHBy + M i) + A€ P'(c) = 0.

By using (36) and (37), we can rewrite the characteristic equation at
the leading order as

B+ 3sgn(c — ¢)P" (cy) = 0, (41)

where B # 0 due to our assumption. A nonzero solution for A, exists
since P"(cy) # 0 due to our assumption. For ¢ € (cy, ¢y + €;), we have
A2 > 0if BP"(cy) < 0 and 42 < 0 if BP"(cy) > 0. The sign of 47 is ex-
changed to the opposite if ¢ € (¢y—¢, ¢p). This concludes the proof. []

Remark 10. When (5,, i0,) is obtained from the system (29) for ¢ # ¢,
we add the additional term — Wﬁ; n' in the system (29) required by
the Fredholm theorem. This term of order O(¢) is compensated for by
the term +¢~! ﬁ)//(ﬁz) n' of order O(e?) in the system (40). The orders
are consistent with the assumption P”(cy) # 0, which ensures that

P'(c) = OCe).

Remark 11. As Fig. 1 shows, the periodic wave with the even profile
n € Co (D) is continued numerically with respect to the steepness
parameter s. Based on the numerical observations in Fig. 1, there
is exactly one fold point between each extremal point of P(c) or,

equivalently, £(c), so that % alternates its sign at each point, where
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Table 1
Parameters of Stokes waves at the first two extrema of energy &€ or, equiva-
lently, the horizontal momentum P with the coefficient 3 in (36).

s c & P B
0.13660354990 1.0921379 0.46517718146 0.44729319629 11.01822
0.14079654715 1.0922868 0.45770578965 0.44045605242 10.96232

P’(cy) = 0. Similarly, P"(c,) alternates its sign between the extremal
points. Since we show numerically in Section 5 that the value of B
has the same sign for each instability bifurcation, the new pair of
real (unstable) eigenvalues A bifurcates in the direction of increasing
steepness s at each extremal point of P(c).

5. Numerical approximations

Stokes waves of large steepness are beyond the applicability of the
small-amplitude expansions. Table 1 gives the first and second critical
points of the energy £ at steepness s; and s,, which are also seen in
Fig. 1. It is then necessary to use other approximations of Stokes waves
with large steepness before the stability problem can be studied. There
are two challenging problems that have to be treated numerically, the
first one is obtaining a solution of the Babenko equation (12) with high
accuracy, and the second one is finding eigenvalues of the stability
problem (18). Once the eigenvalues are found, we can compare them
with the leading order given by (41) to cross-validate numerics and
theory.

5.1. The Babenko equation

We adopt the strategy from [25,27] to find Stokes waves numeri-
cally. The entire branch of Stokes waves is found by the continuation
method with respect to the speed parameter c. Given a Stokes wave
7O ) with speed ¢© that solves S(c?, ) = 0, where S denotes the
nonlinear Babenko equation (12), we apply Newton’s method to find a
new solution (c¢(1, 4(). The initial approximation to Stokes wave with
¢ is chosen to be #© + 65 from the expansion

0=ScW, 1 +6n) = S, 1) + LV, 1Oy 5+ -, (42)

where the neglected terms are quadratic and higher order in terms
of 6n and L£(c,7©) is the linearized Babenko operator computed at
the profile #© for the speed ¢(1). Once the nonlinear terms in (42) are
neglected, the approximate equation for 67 yields

£, sn = =5, 1), (43)

which is solved in the Fourier space by means of the minimum residual
method [41] (MINRES). The linearized Babenko’s operator L is self-
adjoint in L?(T), however it is not positive definite. This makes MINRES
the preferred method of computing solutions for the correction term
(43). Once the linear system in (43) is solved, the approximate solution
is updated via 7 — 5© + 65, and the new & is found from (43) with
updated 7. This algorithm is repeated until a convergence criterion
(1S, 7 + 6m)|| 2 < 10728 is reached, at which step we assign (1) =
7 46y for this value of ¢(1). For variable precision arithmetic, the GNU
MPFR [42] and GNU MPC [43] libraries are used, and the fast Fourier
Transform (FFT) C library is written based on [44]. The convergence
rate of Fourier series is improved by means of auxiliary conformal
mapping based on Jacobi elliptic function, see [45] and applications
of this method in [27].

5.2. Generalized eigenfunctions
We construct the eigenfunctions in the proof of Theorem 1 using a

variant of orthogonal projection algorithm programmed in double pre-
cision arithmetic. Afterwards, the chain of generalized eigenfunctions
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is found by numerically solving linear inhomogeneous systems with the
preconditioned MINRES. A symmetric positive definite preconditioner
is defined by the strictly positive operator (14+c2K) to improve the linear
solver convergence rate.

Fig. 2 shows the three generalized eigenfunctions of the Jordan
chains (v, w,), (v, w,), and (v3, w;) defined via the linear inhomoge-
neous systems (21) with a = 1, @, = 0, (29), and (31) for the Stokes
wave at the first two extrema s; and s, of the energy in Table 1.

Fig. 3 illustrates the convergence rate of the preconditioned MINRES
for the system (29) to find the eigenfunction (v,, w,) for Stokes waves
at s; and s,. The number of Fourier modes to represent the Stokes wave
and the (generalized) eigenfunctions on a uniform grid is N = 8192 at
sy, and N = 262144 for s,.

5.3. Finding eigenvalues of the stability problem

Eigenvalues of the stability problem can be found from numerically
solving the eigenvalue problem (18), or equivalently, the quadratic
pencil problem

(MK MA? = 2cHA - L] v =0,

where K~! is defined under the orthogonality condition ((1 +2Kr), v) =
0, see (35). The quadratic pencil problem was used in [25] for co-
periodic perturbations and in [26,29] for subharmonic perturbations
via the Bloch-Floquet theory (see also [46] for the numerical Hill
method). A new pair of eigenvalues collide at each extrema of the
energy. The collision occurs at the origin in the spectral plane, and
the eigenvalues become real as shown in Fig. 4 (right panels). It is
convenient to show the square of eigenvalue A%(¢) as a function of & =
¢ — ¢, and compare it to the leading order (41) to cross validate theory
and numerics. We do so in Fig. 4 (left panels). The direct computation
of eigenvalues is obtained via the shift-and-invert method.

Remark 12. It is interesting to note that the values of the coefficient
B are surprisingly close at both extrema of the energy, see Table
1. The coefficient B is uniquely defined by (36) computed from the
Puiseux expansion (38). A further investigation is needed to check if
this behavior is universal for all extremal points of the energy.

6. Conclusion

We summarize the main outcome of this work. We have used confor-
mal variables for the two-dimensional Euler’s equation in an infinitely
deep fluid and computed the leading order of the unstable eigenvalues
arising from the zero eigenvalue bifurcation of the Stokes waves with
respect to co-periodic perturbations. The zero eigenvalue bifurcation
occurs at every extremal point of the energy or, equivalently, the
horizontal momentum. The leading order of the unstable eigenvalues
computed numerically shows that the new unstable eigenvalues emerge
in the direction of the increasing steepness of the Stokes wave.

This work opens the road to analytic understanding of bifurcations
of the unstable spectral bands in the modulational instability of Stokes
waves by using the Bloch-Floquet theory. Numerical results have been
computed recently in [28,29] and show interesting transformations
of the spectral bands when the real unstable eigenvalues bifurcate in
the space of anti-periodic and co-periodic perturbations. The figure-co
instability arises at the co-periodic instability bifurcation, and this
transformation is described by the characteristic equation which ex-
tends the leading-order approximation (41) by the parameter of the
Bloch-Floquet theory. Details of the derivation of the characteristic
equation are currently in progress. The recent work [47] describes a
similar transformation to the figure-co instability in the local model
of the focusing modified Korteweg—de Vries equation, which has been
studied by using integrability of the model.
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Fig. 2. The generalized eigenvectors (v,,w,), (v,, w,) and (vs, w;) defined via Egs. (21) with a; = 1, a, =0, (29) and (31) (top to bottom) for the first two critical
points of the energy at s; = 0.13660354990 (left) and s, = 0.14079654715 (right).
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Fig. 3. An example of numerical convergence of the iterative method for (v,,w,) for the Stokes waves at s, = 0.13660355 (left) and s, = 0.1407965471 (right).
The relative L? norm of the residual is shown versus the iteration number.
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Fig. 4. Top left shows A%(¢) obtained from numerical solution of the stability problem (18) (red dots), and evaluating the leading order (41) (green line) with
/1% =29.4871 (B = 11.01822); and top right shows a pair of real eigenvalues appearing from a collision of two imaginary eigenvalues for ¢ — ¢, = ¢ = =3.93 x 1073,
e =-185x10"%, ¢ = —4.23x107° (gold, orchid and green triangles respectively), ¢ = 0 (red circle), e = 4.17x 107, £ = 1.78x 10> and £ = 3.75x 10~ (green, orchid
and gold diamonds respectively). Bottom row shows the associated quantities at the second extremum with Af =-2424.9 (B =10.96232) and c—c, = £ = 6.23x1077,
e =3.23x 1077 (orchid and green triangles respectively), € = 0 (red circle), e = —=2.77 x 1077 and € = —6.77 x 1077 (green and orchid diamonds respectively).

CRediT authorship contribution statement

Sergey Dyachenko: Writing — review & editing, Writing — origi-
nal draft, Visualization, Validation, Software, Investigation. Dmitry E.
Pelinovsky: Writing — review & editing, Writing — original draft, Val-
idation, Supervision, Resources, Project administration, Methodology,
Investigation, Formal analysis, Conceptualization.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests: the
second author is Deputy Editor in Physica D. The first author declares

no known competing financial interests or personal relationships that
could have appeared to influence the work reported in this paper.

Acknowledgment

A part of this work was done while the second author attended the
INI program “Emergent phenomena in nonlinear dispersive waves” in
Newcastle, UK (July-August, 2025).

Data availability

No data was used for the research described in the article.

References

[1]1 G.G. Stokes, On the theory of oscillatory waves, Trans. Camb. Philos. Soc. 8
(1847) 441.
[2] G.G. Stokes, On the theory of oscillatory waves, Math. Phys. Pap. 1 (1880) 197.

[3]

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

A.l. Nekrasov, On waves of permanent type, Izv. Ivanovo-Voznesensk. Polite.
Inst. 3 (1921) 52-65.

T. Levi-Civita, Détermination rigoureuse des ondes permanentes d’ampleur finie,
Math. Ann. 93 (1) (1925) 264-314.

D. Struik, Détermination rigoureuse des ondes irrotationelles périodiques dans
un canal & profondeur finie, Math. Ann. 95 (1926) 595-634.

C.J. Amick, L.E. Fraenkel, J.F. Toland, On the Stokes conjecture for the wave of
extreme form, Acta Math. 148 (1) (1982) 193-214.

P.1. Plotnikov, A proof of the Stokes conjecture in the theory of surface waves,
Stud. Appl. Math. 108 (2) (2002) 217-244.

J.F. Toland, On the existence of a wave of greatest height and Stokes’s conjecture,
Proc. R. Soc. A 363 (1715) (1978) 469-485.

T.B. Benjamin, J.E. Feir, The disintegration of wave trains on deep water, J.
Fluid Mech. 27 (3) (1967) 417-430.

V.E. Zakharov, Stability of periodic waves of finite amplitude on the surface of
a deep fluid, J. Appl. Mech. Tech. Phys. 9 (2) (1968) 190-194.

T. Bridges, A. Mielke, A proof of the Benjamin-Feir instability, Arch. Ration.
Mech. Anal. 133 (1995) 145-198.

H.Q. Nguyen, W.A. Strauss, Proof of modulational instability of Stokes waves in
deep water, Comm. Pure Appl. Math. 76 (5) (2023) 1035-1084.

M. Berti, A. Maspero, P. Ventura, Full description of Benjamin-Feir instability
of Stokes waves in deep water, Invent. Math. 230 (2) (2022) 651-711.

M. Berti, A. Maspero, P. Ventura, Benjamin-Feir instability of Stokes waves in
finite depth, Arch. Ration. Mech. Anal. 247 (2023) 91.

V.M. Hur, Z. Yang, Unstable Stokes waves, Arch. Ration. Mech. Anal. 247 (2023)
62.

B. Deconinck, K. Oliveras, The instability of periodic surface gravity waves, J.
Fluid Mech. 675 (2011) 141-167.

R. Creedon, B. Deconinck, O. Trichtchenko, High-frequency instabilities of the
Kawahara equation: a perturbative approach, SIAM J. Appl. Dyn. Syst. 20 (3)
(2021) 1571-1595.

R. Creedon, B. Deconinck, O. Trichtchenko, High-frequency instabilities of a
Boussinesqg-Whitham system: a perturbative approach, Fluids 6 (4) (2021) 136.
R.P. Creedon, B. Deconinck, A high-order asymptotic analysis of the Benjamin—
Feir instability spectrum in arbitrary depth, J. Fluid Mech. 956 (2023)
A29.

M. Tanaka, The stability of steep gravity waves, J. Phys. Soc. Japan 52 (9) (1983)
3047-3055.


http://refhub.elsevier.com/S0167-2789(25)00402-6/sb1
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb1
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb1
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb2
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb3
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb3
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb3
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb4
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb4
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb4
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb5
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb5
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb5
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb6
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb6
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb6
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb7
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb7
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb7
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb8
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb8
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb8
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb9
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb9
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb9
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb10
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb10
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb10
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb11
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb11
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb11
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb12
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb12
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb12
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb13
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb13
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb13
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb14
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb14
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb14
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb15
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb15
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb15
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb16
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb16
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb16
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb17
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb17
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb17
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb17
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb17
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb18
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb18
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb18
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb19
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb19
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb19
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb19
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb19
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb20
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb20
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb20

S. Dyachenko and D.E. Pelinovsky

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

M. Tanaka, The stability of steep gravity waves. II, J. Fluid Mech. 156 (1985)
281-289.

M. Longuet-Higgins, M. Tanaka, On the crest instabilities of steep surface waves,
J. Fluid Mech. 336 (1997) 51-68.

S. Murashige, W. Choi, Stability analysis of deep-water waves on a linear shear
current using unsteady conformal mapping, J. Fluid Mech. 885 (2020).

A.O. Korotkevich, P.M. Lushnikov, A. Semenova, S.A. Dyachenko, Superharmonic
instability of Stokes waves, Stud. Appl. Math. 150 (1) (2023) 119-134.

S.A. Dyachenko, A. Semenova, Canonical conformal variables based method for
stability of Stokes waves, Stud. Appl. Math. 150 (3) (2023) 705-715.

S.A. Dyachenko, A. Semenova, Quasiperiodic perturbations of Stokes waves:
Secondary bifurcations and stability, J. Comput. Phys. 492 (2023) 112411.

S.A. Dyachenko, V.M. Hur, D.A. Silantyev, Almost extreme waves, J. Fluid Mech.
955 (2023) Al7.

B. Deconinck, S.A. Dyachenko, P.M. Lushnikov, A. Semenova, The dominant
instability of near-extreme Stokes waves, Proc. Natl. Acad. Sci. 120 (32) (2023)
€2308935120.

B. Deconinck, S. Dyachenko, A. Semenova, Self-similarity and recurrence in
stability spectra of near-extreme Stokes waves, J. Fluid Mech. 995 (2024) A2.
L.V. Ovsyannikov, Dynamika sploshnoi sredy, Lavrentiev Institute of Hydrody-
namics, Sib. Branch Acad. Sci. USSR 15 (1973) 104.

S. Tanveer, Singularities in water waves and Rayleigh-Taylor instability, Proc.
R. Soc. Lond. Ser. A: Mathematical Phys. Sci. 435 (1893) (1991) 137-158.

S. Tanveer, Singularities in the classical Rayleigh-Taylor flow: formation and
subsequent motion, Proc. R. Soc. Lond. Ser. A: Mathematical Phys. Sci. 441
(1913) (1993) 501-525.

K.I. Babenko, Some remarks on the theory of surface waves of finite amplitude,
in: Doklady Akademii Nauk, vol. 294, Russian Academy of Sciences, 1987, pp.
1033-1037.

10

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Physica D: Nonlinear Phenomena 483 (2025) 134925

A.L Dyachenko, E.A. Kuznetsov, M.D. Spector, V.E. Zakharov, Analytical descrip-
tion of the free surface dynamics of an ideal fluid (canonical formalism and
conformal mapping), Phys. Lett. A 221 (1-2) (1996) 73-79.

S. Locke, D.E. Pelinovsky, Peaked Stokes waves as solutions of Babenko’s
equation, Appl. Math. Lett. 161 (2025) 109359.

S. Locke, D.E. Pelinovsky, On smooth and peaked traveling waves in a local
model for shallow water waves, J. Fluid Mech. 1004 (2025) Al.

T.B. Benjamin, P.J. Olver, Hamiltonian structure, symmetries and conservation
laws for water waves, J. Fluid Mech. 125 (1982) 137-185.

A. Welters, On explicit recursive formulas in the spectral perturbation analysis
of a Jordan block, SIAM J. Matrix Anal. Appl. 32 (2011) 1-22.

P.G. Saffman, The superharmonic instability of finite-amplitude water waves, J.
Fluid Mech. 159 (1985) 169-174.

R.S. MacKay, P.G. Saffman, Stability of water waves, Proc. R. Soc. A 406 (1830)
(1986) 115-125.

Y. Saad, Numerical Methods for Large Eigenvalue Problems, Manchester
University Press, 1992.

L. Fousse, G. Hanrot, V. Lefévre, P. Pélissier, P. Zimmermann, MPFR: A multiple-
precision binary floating-point library with correct rounding, ACM Trans. Math.
Softw. (TOMS) 33 (2) (2007) 13-es.

A. Enge, M. Gastineau, P. Théveny, P. Zimmermann, mpc — A library for
multiprecision complex arithmetic with exact rounding, 2022, 1.3.0 INRIA,
http://www.multiprecision.org/mpc/.

W.H. Press, Numerical Recipes 3rd Edition: The Art of Scientific Computing,
Cambridge University Press, 2007.

N. Hale, T.W. Tee, Conformal maps to multiply slit domains and applications,
SIAM J. Sci. Comput. 31 (4) (2009) 3195-3215.

B. Deconinck, J.N. Kutz, Computing spectra of linear operators using the
Floquet-Fourier-Hill method, J. Comput. Phys. 219 (1) (2006) 296-321.

S. Cui, D.E. Pelinovsky, Instability bands for periodic traveling waves in the
modified Korteweg-de Vries equation, Proc. R. Soc. A 481 (2025) 20240993.


http://refhub.elsevier.com/S0167-2789(25)00402-6/sb21
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb21
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb21
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb22
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb22
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb22
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb23
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb23
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb23
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb24
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb24
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb24
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb25
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb25
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb25
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb26
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb26
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb26
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb27
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb27
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb27
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb28
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb28
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb28
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb28
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb28
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb29
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb29
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb29
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb30
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb30
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb30
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb31
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb31
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb31
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb32
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb32
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb32
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb32
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb32
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb33
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb33
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb33
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb33
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb33
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb34
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb34
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb34
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb34
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb34
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb35
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb35
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb35
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb36
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb36
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb36
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb37
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb37
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb37
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb38
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb38
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb38
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb39
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb39
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb39
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb40
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb40
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb40
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb41
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb41
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb41
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb42
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb42
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb42
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb42
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb42
http://www.multiprecision.org/mpc/
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb44
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb44
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb44
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb45
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb45
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb45
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb46
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb46
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb46
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb47
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb47
http://refhub.elsevier.com/S0167-2789(25)00402-6/sb47

	Bifurcations of unstable eigenvalues for Stokes waves derived from conserved energy
	Introduction
	Equations of motion in conformal variables
	Conserved quantities
	Formulation of equations of motion in the traveling frame
	Existence of traveling waves
	Linear stability of traveling waves

	Criterion for instability bifurcation
	 Eigenvectors of spec-Bab-eq for λ= 0 due to the symmetries
	 Eigenvectors of spec-Bab-eq for λ= 0 due to the zero eigenvalue bifurcation

	 The leading order of unstable eigenvalues
	Numerical approximations
	The Babenko equation
	Generalized eigenfunctions
	Finding eigenvalues of the stability problem

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	Data availability
	References


