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We investigate the input-output transmission regimes of optical structures with periodic nonlinear index. By
deriving an analytical model from the Maxwell equations, we analyze the physical processes responsible for
multistable and stable behavior. The threshold condition that separates multistable and stable transmission
regimes is found exactly within the underlying model. We also derive analytical expressions for the limiting
transmitted intensity in the stable regime and for the transmittance in the multistable regime in terms of optical
wavelength and material parameters.

PACS number�s�: 42.65.Pc, 42.79.Dj

Nonlinear periodic optical structures exhibit a response
which is simultaneously wavelength- and intensity-
dependent. The rapid transformation between states of low
and high transmittance and the hysteresis in the input-output
power relationship arise from the presence of optical bista-
bility �1�. These physical processes make the nonlinear peri-
odic structures be promising building blocks for functional,
multiwavelength photonic systems. Application areas of
bistable nonlinear gratings include optical signal processing
�2–4�, memory and logic�3�, power limiting �4�, bistable
lasing �5�, and beam reshaping�6�.

Optical gratings are realized by modulating periodically
the linear refractive index. A number of entirely new appli-
cations are enabled if not only the linear, but also the non-
linear, components of the refractive index can be managed
�7�. These structures may exhibit stable limiting behavior in
their input-output transmission characteristic: the transmitted
intensity is clamped at the asymptotic limiting value and no
switching to a state of higher transmittance takes place. This
behavior, at once highly nonlinear yet stable, is conducive to
all-optical limiting �7�, sensor and personnel protection,
logic, analog-to-digital conversion, and all-optical subtrac-
tion �8�. These concepts and applications are effective on
both coherent and noncoherent optical signals.

Stable and bistable limiting regimes of nonlinear periodic
structures are separated by a threshold that depends on ma-
terial parameters and optical wavelength. This threshold has
been widely studied for a nonlinear Fabry-Perot e´talon �9�,
multilayer structures�10,11�, and cascading materials based
on backward second-harmonic generation�12�. In Fabry-
Perot structures, the threshold for bistability was found in
terms of the resonator finesse and nonlinear coefficient of the
medium�13�. Li et al. gave the stability condition for non-
linear distributed feedback structures in terms of transmitted
intensity �14�. He et al. suggested that the stability bound-
aries cannot in general be described by a simple relationship,
but that low intensity states should yield stable solutions for
any kind of structure�15�.

In this Rapid Communication we describe a revolutionary
way to achieve true all-optical limiting in the optical struc-
ture by periodic management of the Kerr nonlinearity. More-
over, we identify the exact analytical expression for the lim-
iting intensity and for stability boundary separating the stable
from the multistable transmission regime.

We investigate a particularly promising periodic optical
structure that consists of alternating layers with matched lin-
ear refractive indices but different�positive versus negative�
Kerr nonlinearities. The nonlinear periodic structure is
shown in Fig. 1. The propagation of two noncoherent light
waves of frequency� is described by the Maxwell equations
�16�,

�U��U��zz�k2�1��n�z �I�z ���U��U���0. �1�

Here U�(z) represents the forward�incident� wave,U�(z)
the backward�reflected� wave, and the local intensity of light
is I(z)��U�(z)�2��U�(z)�2, found by averaging over the
uncorrelated statistical ensemble�16�. The wave vectork and
the optical wavelength� �where k�2�n0 /�) are given
within the linear theory ask��n0 /c, wherec is the speed of
light in vacuum andn0 is the linear index. The normalized
nonlinear correction�n(z)�nnl(z)/n0 depends on the Kerr
coefficient nnl(z). The Kerr coefficient may be positive or
negative depending on the medium and the wavelength�17�.

*Present address: Department of Mathematics, McMaster Univer-
sity, Hamilton, Ontario, Canada L8S 4K1.

FIG. 1. Scheme of the periodic optical structure consisting of
alternating layers with the same linear refractive index and different
Kerr nonlinearities.
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We first use a scattering matrix approach�18�. We assume
that the local intensityI(z) is constant along each individual
layer and absorption is negligible. The forward- and
backward-propagating waves can then be represented explic-
itly at each layer�see Fig. 1� as

U��z ��� a j
�e�ikz�ik�nnl1I j(z� j	), layer I

b j
�e�ikz�ik�nnl2I j(z� j	), layer II,

�2�

where I j��a j
��2��a j

��2 is the intensity,	 is the period of
the grating,N is the number of periods, and 0
 j
(N�1).
The scattering matrix betweena j

� and a j�1
� can be found

from Eqs.�1� and�2� by matching the amplitudes and slopes
of the electric field at the interface between two adjacent
layers,

� a j�1
� eik	

a j�1
� e�ik	� �M 21M 12� a j

�

a j
�� , �3�

where the scattering matrix, e.g.,M 12, is

M 12�
1

2 � �1�k1 /k2�eik1	/2 �1�k1 /k2�e�ik1	/2

�1�k1 /k2�eik1	/2 �1�k1 /k2�e�ik1	/2� ,
and k1,2�k(1��nnl1,2I j). If the nonlinearity is small, i.e.,
��nnl1,2�I j�1, the amplitudesA�(z j)�a j

� defined atz�z j

� j	 vary slowly across the adjacent layers. We can there-
fore assume

lim
	→0

A��z j�1��A��z j�

	
�

dA�

dz

and derive coupled-mode equations in this slowly varying
amplitude limit,

i
dA�

dz
�k� n̄nl��A�e�3ik	/2�A��� �A��2��A��2�, �4�

i
dA�

dz
�k� n̄nl���A�e3ik	/2�A��� �A��2��A��2�, �5�

where� n̄nl�(nnl1�nnl2)/(2n0) is the average normalized
nonlinear index and� is a product of variance of the nonlin-
ear index and the resonance factor,

���nnl1�nnl2

nnl1�nnl2
� sin�k	/2�

k	/2
. �6�

Exact resonance between the wave and the periodic grat-
ing occurs whenk	��, i.e., ��2	n0. The coupled mode
model �4� and �5� for exact resonance and matched fluctua-
tions of the nonlinear index�i.e., nnl1��nnl2) was consid-
ered recently�7�. The model derived herein has wider appli-
cability and describes wave propagation in the general
nonlinear periodic structure with two alternating layers out-
side of the exact resonance case.

The nonlinear coupling between forward and backward
waves is described by the� terms in Eqs.�4� and�5�. These
terms provide stable, limiting behavior fornnl1��nnl2,
when�→�. The other right-hand-side terms in Eqs.�4� and

�5� are associated with oscillatory behavior and, correspond-
ingly, with multistability. Multistability finds its origins in
the development of the cavity roundtrip phase between con-
ditions of destructive and constructive interference as the av-
erage index evolves with intensity. The transition to multi-
stability takes place when the self-coupling�destabilizing�,
oscillatory terms overwhelm the mutually coupling�limiting�
terms. Here, we show that the threshold condition between
these two regimes is given by��1, i.e., the stable limiting
behavior occurs for

�nnl1�nnl2

nnl1�nnl2
� sin�k	/2�

k	/2

1. �7�

The coupled system�4� and �5� exhibits conservation of
the energy flow through the optical structure,

�A��z ��2��A��z ��2�Iout , �8�

whereIout��A�(l)�2 is the transmitted intensity at the right
end of the structure, andl�N	 is the total length of the
structure. There is no radiation incident on the structure from
the right, which specifies the boundary condition:A�(l)
�0.

We show in Fig. 2 the transmitted (Iout��A�(l)�2) versus
incident (I in��A�(0)�2) intensity for two different structure
lengths at exact resonancek	��. The nonlinear indices are
specified asnnl1�0.01 andnnl2�0.00 for two solid curves,
where ��2/�. This is the multistability regime when the
transmitted intensity oscillates between the values deter-
mined by minimum and maximum transmittance,

T�1��A��0�

A��0�
�2

. �9�

The maximum transmittance appears whenA�(0)�0, so
that Tmax�1. The minimum transmittance is defined by the
condition dA�(0)/dz�0, whenA�(0)��A�(0)e3ik	/2 so
that Tmin�1��2. When��0, e.g., atnnl1�nnl2, the opti-
cal structure is homogeneous for all intensities andIout
�I in . The greater is the parameter�, the wider is the area
between oscillations in the input-output transmission charac-
teristics. We show in Fig. 2 that the period of the multistable
oscillations�measured in terms ofI in) becomes smaller for

FIG. 2. Multistable and stable regimes of the nonlinear periodic
structures atk	��.
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longer structures�whenN grows�. As a result, more possible
transmission levels are present within a given range of the
incident intensity.

When� reaches 1,Tmin vanishes. This marks the onset of
true, stable optical limiting. In the region�
1, the cross-
coupling of two waves dominates over the phase-related os-
cillations and the multistability regime is replaced by the
stable limiting transmission regime. We show the stable lim-
iting behavior by a dashed curve in Fig. 2 for the parameter:
nnl1�0.015, nnl2��0.005, when��4/�.

In order to find the limiting value for transmitted intensity
and to characterize the features of the multistability regime,
we construct exact solutions to Eqs.�4� and �5�. First, we
rescale the distancez by Z�k� n̄nlz and substitute the am-
plitudesA�(z) in the polar form,

A��z ���Iout�Qei(���), �10�

A��z ���Qei(��3k	/2). �11�

Here Q(Z) and �(Z) are the intensity and the complex
phase of the reflected wave, respectively, and�(Z) is the
phase mismatch between the incident and reflected waves.
The coupled system�4� and �5� reduces to the following
form:

dQ

dZ
��2�Iout�2Q ��Q�Iout�Q �� sin�, �12�

d�

dZ
��Iout�2Q ��2�

Iout�2Q

�Q�Iout�Q �
� cos�� . �13�

The boundary conditions areQ(L)�0 and �(L)��/2,
whereL�k� n̄nll. The latter condition follows from Eq.�13�
asQ(L) vanishes and from Eq.�12� asQ(Z) has a negative
slope nearZ�L. Subject to this boundary condition, we find
the integral of Eqs.�12� and �13� in the form,

� cos��� Q

Iout�Q

0. �14�

Using this relation the system�12� and �13� can be reduced
to the single equation,

d�

dZ
�Iout�1��2 cos2 ��, �15�

which can be further integrated. It is obvious from Eqs.�14�
and �15� that �(Z) always increases from�(0) to �(L)
��/2. However, since cos� is non-negative, the phase
�(Z) may have jumps from���/2 to ����/2 at the
points inside the interval 0�Z�L, where Q(Z) vanishes.
Only the fundamental branch of solutions has no jumps and
this branch is unique in the limiting transmission regime.

The exact solution forQ(Z) follows from Eqs.�14� and
�15� in the form

Q�Z ��
�2Iout sin2��1��2Iout�L�Z ��

1��2 cos�2�1��2Iout�L�Z ��
. �16�

We show from Eq.�16� that the two transmission regimes
are separated by the condition��1.

In the multistable regime,��1, the solution�16� is non-
singular for any value ofIout . The transmittanceT can be
found from Eqs.�9� and �16� in the form

T�
1��2 cos�2�1��2IoutL�

1��2 cos2��1��2IoutL�
. �17�

The points of maximum transmittance�Tmax�1, Q(0)�0�
are given by the roots

Iout�In�
�n

�1��2L
, n�0,1,2, . . . . �18�

The distribution for the reflected waveQ(Z) has exactlyn
nodes across the optical structure within the parameter range
In
Iout�In�1. For each node, the phase�(Z) jumps from
��/2 to the left of the node to��/2 to the right. The points
of minimum transmittance�Tmin�1��2, dQ(0)/dZ�0�
are located exactly in the middle of each interval (In ,In�1).

In the stable regime,�
1, the distribution of the reflected
waveQ(Z) becomes singular atIout
I lim , where

I lim�
�

4�1��2L
�1�

2

�
arcsin� 1

�2� � . �19�

FIG. 3. Normalized limiting value of the output powerI lim /I0

as a function of the inverse variance of the nonlinear index� at
k	��.

FIG. 4. Limit transmitted powerI lim as a function of the wave-
length ratio�/(	n0).
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At the limiting value,Iout�I lim , the distributionQ(Z) di-
verges asZ→0 so thatI in→�. True optical limiting is there-
fore achieved: the transmitted intensity is bounded by its
limiting value irrespective of the incident power�see the
dashed curve in Fig. 2�.

When n̄nl→0, the limiting intensity approaches the
asymptotic value�see also�7��,

lim
n̄nl→0

I lim�I0�
�n0

4N�nnl1�nnl2�sin�k	/2�
. �20�

We plot in Fig. 3 the normalized limiting intensity (I lim /I0)
as a function of� at the exact resonancek	��, where� is
the inverse variance of the nonlinear index given by

���nnl1�nnl2

nnl1�nnl2
�. �21�

When the inverse variance� is small, the normalized limit-
ing intensity is smaller than 1. When� approaches the
threshold boundary�7�, i.e.,��2/� for the exact resonance,
the normalized intensity approaches�2. Thus, the limiting

intensity remains within 40% of its asymptotic valueI0 for
any value of the material parameters.

The stable limiting regime of the periodic optical structure
is supported by a low average Kerr coefficient throughout the
structure accompanied by a high layer-to-layer variance. It is
facilitated by close proximity to the Bragg resonance. When
the light wavelength� deviates from the exact resonance�
�2	n0, the stable regime breaks down. We illustrate this
feature in Fig. 4 by plotting the limiting transmitted intensity
I lim �19� versus the wavelength ratio�/(	n0) for two values
of �: ��0 �dashed curve� and ��1/� �solid curve�. The
stable behavior of the nonlinear periodic structure is affected
weakly by deviation of the light wavelength to longer-than-
resonance region, while shorter-than-resonance wavelengths
quickly undergo transitions to the multistable regime�see
Fig. 4�.

In conclusion, we have elaborated and explained the con-
ditions for stability and true asymptotic limiting in nonlinear
periodic structures. Stable all-optical limiting is a highly
promising avenue towards optical signal processing. We
have derived a threshold condition that predicts, in terms of
the material parameters and optical wavelength, whether a
given structure is stable or multistable.
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