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Transmission regimes of periodic nonlinear optical structures
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We investigate the input-output transmission regimes of optical structures with periodic nonlinear index. By
deriving an analytical model from the Maxwell equations, we analyze the physical processes responsible for
multistable and stable behavior. The threshold condition that separates multistable and stable transmission
regimes is found exactly within the underlying model. We also derive analytical expressions for the limiting
transmitted intensity in the stable regime and for the transmittance in the multistable regime in terms of optical
wavelength and material parameters.

PACS numbeps): 42.65.Pc, 42.79.Dj

Nonlinear periodic optical structures exhibit a response In this Rapid Communication we describe a revolutionary
which is simultaneously wavelength- and intensity-way to achieve true all-optical limiting in the optical struc-
dependent. The rapid transformation between states of lowire by periodic management of the Kerr nonlinearity. More-
and high transmittance and the hysteresis in the input-outp@ver, we identify the exact analytical expression for the lim-
power relationship arise from the presence of optical bistaiting intensity and for stability boundary separating the stable
bility [1]. These physical processes make the nonlinear perfrom the multistable transmission regime.
odic_structures be promi_sing building bIocI_<s fpr functional, e investigate a particularly promising periodic optical
multiwavelength photonic systems. Application areas Ofgyrycture that consists of alternating layers with matched lin-
bistable nonlinear gratings include optu;al signal ProcessiN@ay refractive indices but differefpositive versus negatiye
[2_.4]’ memory and Iogld[3],_ power limiting [4], bistable Kerr nonlinearities. The nonlinear periodic structure is
lasing[5], and beam reshapiri§]. shown in Fig. 1. The propagation of two noncoherent light

Optical gratings are realized by modulating periodically . ? .
the linear refractive index. A number of entirely new appli- \[Ai%\]/es of frequency is described by the Maxwell equations

cations are enabled if not only the linear, but also the non
linear, components of the refractive index can be managed )
[7]. These structures may exhibit stable limiting behavior in ~ (U++U_),+kT1+An(2)I(2)]J(U.+U_)=0. (1)
their input-output transmission characteristic: the transmitted
intensity is clamped at the asymptotic limiting value and noHere U, (z) represents the forwardncideny wave,U _(z)
switching to a state of higher transmittance takes place. Thithe backwardreflected wave, and the local intensity of light
behavior, at once highly nonlinear yet stable, is conducive tags | (z)=|U_(z)|?+|U_(2)|? found by averaging over the
all-optical limiting [7], sensor and personnel protection, uncorrelated statistical ensempls]. The wave vectok and
logic, analog-to-digital conversion, and all-optical subtrac-the optical wavelength\ (where k=2mny/\) are given
tion [8]. These concepts and applications are effective ofvithin the linear theory ak= wny/c, wherec is the speed of
both coherent and noncoherent optical signals. light in vacuum andh, is the linear index. The normalized
Stable and bistable limiting regimes of nonlinear periodicnonlinear correctiolAn(z) =n,(z)/n, depends on the Kerr
structures are separated by a threshold that depends on mgefficientn,,(z). The Kerr coefficient may be positive or

terial parameters and optical Wavelength. This threshold haﬁegative depending on the medium and the Wave|em]]
been widely studied for a nonlinear Fabry-Pertalen [9],

multilayer structure$10,11], and cascading materials based

on backward second-harmonic generatidr?]. In Fabry-

Perot structures, the threshold for bistability was found in

terms of the resonator finesse and nonlinear coefficient of the
medium[13]. Li et al. gave the stability condition for non-  Incident
linear distributed feedback structures in terms of transmitted
intensity [14]. He et al. suggested that the stability bound- Reflectsd
aries cannot in general be described by a simple relationshig *

but that low intensity states should yield stable solutions for

any kind of structurg15].
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FIG. 1. Scheme of the periodic optical structure consisting of
*Present address: Department of Mathematics, McMaster Univeralternating layers with the same linear refractive index and different
sity, Hamilton, Ontario, Canada L8S 4K1. Kerr nonlinearities.
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We first use a scattering matrix appro4dtB]|. We assume 10 —
that the local intensity(z) is constant along each individual B ] 4,"’
layer and absorption is negligible. The forward- and £ “ =T el
backward-propagating waves can then be represented explic- § ;
itly at each layer(see Fig. 1 as g . ap——
+ _+ikz=+i (z—1i = et -
ajfeflkalkAnmﬂJ(Z ]A), |ayer | E ; '-._ I.In :_;:ZI
Ut(z) - bjieiikziikAnnlzlj(Z*jA), |ayer ”, (2) E = == .\\_Ir -
i
wherel;=|a;"|*+]a; |* is the intensity,A is the period of 0
the grating,N is the number of periods, andg<(N—1). a 5 10 15 20
The scattering matrix betweesy~ and a;%.; can be found Incident Fonsity

from Eqgs.(1) and(2) by matching the amplitudes and slopes _ _ _ o
of the electric field at the interface between two adjacent FIG. 2. Multistable and stable regimes of the nonlinear periodic

layers, structures akA = .
a]*+ lei kA aj+ (5) are associated with oscillatory behavior and, correspond-
a e ikA =MxaMy| __ |, (3)  ingly, with multistability. Multistability finds its origins in
j+1 ]

the development of the cavity roundtrip phase between con-
ditions of destructive and constructive interference as the av-

where the scattering matrix, e. , is . I . L i
g 12 erage index evolves with intensity. The transition to multi-

1[(1+ky/kp)e kM2 (1—k, [ky)e ™ Tkar2 stability takes place when the self-couplifdestabilizing,
Mi=5 (1—ky k) M2 (14K, Jky)ear2) oscillatory terms overwhelm the mutually couplifigniting)
—R1lR2 11R2

terms. Here, we show that the threshold condition between
these two regimes is given by=1, i.e., the stable limiting

andk, ,=k(1+Ang,.l;). If the nonlinearity is small, i.e., .
12=K( 2l j) y behavior occurs for

|Ang 1 d1i<1, the amplitudest\i(zj)zaji defined atz=z;
=jA vary slowly across the adjacent layers. We can there-

fore assume Nni1~ Nniz| SINKA/2) _

N1t Noo  KAJ2 =1 @)

. AT (zz1)—A%(z) dAT - .
lim A = Tdz The coupled systerfd) and (5) exhibits conservation of

A=0 the energy flow through the optical structure,
and derive coupled-mode equations in this slowly varying N2 A= 2_
amplitude limit, AT ()" =A™ (2)|*= 1 out, (8
dA* wherel,,,=|A*(1)|? is the transmitted intensity at the right

=kAny(kA~e 3KMV2_ A*)(JATI2+|AT|?), (4) end of the structure, ant=NA is the total length of the

dz structure. There is no radiation incident on the structure from
dA- the right, which specifies the boundary conditiok: (1)
i~ —kAny (= kATeMEL AT (AT PHIAT]?), (5) =0 - .

dz We show in Fig. 2 the transmitted,,=|A" (1)|?) versus

_ incident (;,=|A"(0)|?) intensity for two different structure
where Any = (np1+Npi2)/(2n0) is the average normalized |engths at exact resonankd = 7. The nonlinear indices are
nonlinear index and is a product of variance of the nonlin- specified as,;=0.01 andn,,=0.00 for two solid curves,
ear index and the resonance factor, where k=2/m. This is the multistability regime when the

) transmitted intensity oscillates between the values deter-
o nnll_nnl2| sin(kA/2) 6) mined by minimum and maximum transmittance,
Mo+ Nal  KAS2

A~ (0)|?

Exact resonance between the wave and the periodic grat- T=1-|—
A™(0)

ing occurs wherkA =7, i.e., A\=2An,. The coupled mode
model (4) and (5) for exact resonance and matched fluctua-
tions of the nonlinear indek.e., n,;=—n,,) was consid- The maximum transmittance appears wh&n(0)=0, so
ered recently7]. The model derived herein has wider appli- that T,,x=1. The minimum transmittance is defined by the
cability and describes wave propagation in the generatonditiondA~(0)/dz=0, whenA™(0)= A" (0)e**"/2 so
nonlinear periodic structure with two alternating layers out-that Ti,=1— «2. Whenx=0, e.g., ain,;=n,,, the opti-
side of the exact resonance case. cal structure is homogeneous for all intensities dggl
The nonlinear coupling between forward and backward=1;,. The greater is the parameter the wider is the area
waves is described by theterms in Eqs(4) and(5). These between oscillations in the input-output transmission charac-
terms provide stable, limiting behavior fam,,;=—n,,, teristics. We show in Fig. 2 that the period of the multistable
when k— . The other right-hand-side terms in E¢4) and  oscillations(measured in terms df,) becomes smaller for
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FIG. 4. Limit transmitted powel,;, as a function of the wave-

FIG. 3. Normalized limiting value of the output powhr,/1, length ration/(Any).

as a function of the inverse variance of the nonlinear inHeat

kKA =1.
v lout[1+ k2 cos V] (15)
—_—= co ,

longer structure$whenN grows. As a result, more possible dz ou K

transmission levels are present within a given range of the

incident intensity. which can be further integrated. It is obvious from E@<l)
Whenk reaches 17T, vanishes. This marks the onset of and (15) that ¥ (Z) always increases fror#'(0) to W (L)

true, stable optical limiting. In the region=1, the cross- =w/2. However, since cd¥ is non-negative, the phase

coupling of two waves dominates over the phase-related os¥'(Z) may have jumps fromV' ==/2 to ¥ =—7/2 at the

cillations and the multistability regime is replaced by thepoints inside the interval €Z<L, where Q(Z) vanishes.

stable limiting transmission regime. We show the stable lim-Only the fundamental branch of solutions has no jumps and

iting behavior by a dashed curve in Fig. 2 for the parameterthis branch is unique in the limiting transmission regime.

Nn1=0.015,n,,=—0.005, whernk=4/r. The exact solution foQ(Z) follows from Eqgs.(14) and
In order to find the limiting value for transmitted intensity (15) in the form

and to characterize the features of the multistability regime,

we construct exact solutions to Eq4) and (5). First, we 121 gy SIP[ V1 + 121 (L —2)]
rescale the distanceby Z=kAn,z and substitute the am- Q(2)= 2 2 : (16)
. + . + 14+ —
plitudesA*(z) in the polar form, 1+ k=cog2V1+ klou(l=2)]
A ()= .+ O Qi (@) 10 We show from Eq.(16) thaj[_the two transmission regimes
(2= \loutQ (19 are separated by the conditian=1.
A~ (2)= Qei(®+3kA2), (11) In the multistable regimex<1, the solution(16) is non-

singular for any value of, . The transmittanc can be

Here Q(Z) and ®(Z) are the intensity and the complex found from Eqs(9) and(16) in the form

phase of the reflected wave, respectively, an¢Z) is the

phase mismatch between the incident and reflected waves. 1+ k?cog 21+ k2l oyl ]
fT;)r;(ren.coupled systent4) and (5) reduces to the following T 1+ 42 cod[ ml ouil ] : (17)
dQ The points of maximum transmittan¢& ,,,=1, Q(0)=0]
i —2(lout+2Q) VQ(l gyt + Q) k SN, (12)  are given by the roots
W o) am w2 osw]. (13 low=ln=——, n=0,12,.... (18
dz e Qo et

The distribution for the reflected wav@(Z) has exactlyn

herel — kATl The | dition foll ; Eq13 nodes across the optical structure within the parameter range
whereL =kAny|. The latter condition follows from EA13) | | ' | " "For each node, the phade(Z) jumps from

asQ(L) vanishes an'd from Eq12) asQ(2) has.:'j negati\{e + /2 to the left of the node te- 7/2 to the right. The points
slope neaZ=L. Subject to this boundary condition, we find of minimum transmittancg T ;,=1—«2, dQ(0)/dZ=0]
min ’

the integral of Eqs(12) and(13) in the form, are located exactly in the middle of each intervig) (1 1)-
o In the stable regimes=1, the distribution of the reflected
«cosV = A/ =0. (14  waveQ(Z) becomes singular db;=1i,, Where

I out+ Q
1+ % arcsif( iz) 1 . (29
K

The boundary conditions ar®(L)=0 and ¥(L)==/2,

Using this relation the systef12) and(13) can be reduced |”m:L
to the single equation, 41+ k%L
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At the limiting value,l = 1,im, the distributionQ(zZ) di- intensity remains within 40% of its asymptotic valugfor
verges aZ— 0 so that;,—. True optical limiting is there- ~any value of the material parameters. _
fore achieved: the transmitted intensity is bounded by its The stable limiting regime of the periodic optical structure

limiting value irrespective of the incident powésee the is supported by a low average Kerr coefficient throughout the
dashed curve in Fig.)2 structure accompanied by a high layer-to-layer variance. It is

— I . . facilitated by close proximity to the Bragg resonance. When
When n, —0, the limiting intensity approaches  the the light wavelength\ deviates from the exact resonance

=2An,, the stable regime breaks down. We illustrate this
feature in Fig. 4 by plotting the limiting transmitted intensity
lim (19) versus the wavelength rathd (A ng) for two values

of I': I'=0 (dashed curveandI'=1/# (solid curve. The
stable behavior of the nonlinear periodic structure is affected
weakly by deviation of the light wavelength to longer-than-
resonance region, while shorter-than-resonance wavelengths
quickly undergo transitions to the multistable regirfsee
Fig. 4.

In conclusion, we have elaborated and explained the con-
ditions for stability and true asymptotic limiting in nonlinear
periodic structures. Stable all-optical limiting is a highly
promising avenue towards optical signal processing. We
have derived a threshold condition that predicts, in terms of
the material parameters and optical wavelength, whether a
given structure is stable or multistable.

asymptotic valudsee alsd7]),

| = 7Tn0
O ANNp1— NpiolSINKAT)

im 1= (20

nn|*>0

We plot in Fig. 3 the normalized limiting intensity(,,/1o)
as a function of" at the exact resonan&& = 7, wherel is
the inverse variance of the nonlinear index given by

nnll"'nnlz

= (21)

N1 = Nniz2

When the inverse variande is small, the normalized limit-
ing intensity is smaller than 1. Wheh approaches the
threshold boundary7), i.e.,I'= 2/ for the exact resonance,
the normalized intensity approachg®. Thus, the limiting
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